TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139248 times)
  2. FAT32 Library (71743 times)
  3. Network Ethernet Library (57115 times)
  4. USB Device Library (47428 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28073 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Piezo Driver Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Speakers

Downloaded: 88 times

Not followed.

License: MIT license  

Piezo Driver Click is a compact add-on board that allows you easy system configuration for driving a two-terminal or three-terminal piezo sounder with few external components. This board features the PAM8906, a piezo sounder driver with self-excitation mode from Diodes Incorporated.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Piezo Driver Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Piezo Driver Click" changes.

Do you want to report abuse regarding "Piezo Driver Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Piezo Driver Click

Piezo Driver Click is a compact add-on board that allows you easy system configuration for driving a two-terminal or three-terminal piezo sounder with few external components. This board features the PAM8906, a piezo sounder driver with self-excitation mode from Diodes Incorporated.

piezodriver_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Sep 2023.
  • Type : PWM type

Software Support

We provide a library for the Piezo Driver Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Piezo Driver Click driver.

Standard key functions :

  • piezodriver_cfg_setup Config Object Initialization function.

    void piezodriver_cfg_setup ( piezodriver_cfg_t *cfg );
  • piezodriver_init Initialization function.

    err_t piezodriver_init ( piezodriver_t *ctx, piezodriver_cfg_t *cfg );
  • piezodriver_default_cfg Click Default Configuration function.

    err_t piezodriver_default_cfg ( piezodriver_t *ctx );

Example key functions :

  • piezodriver_pwm_stop Piezo Driver stop PWM module.

    err_t piezodriver_pwm_stop ( piezodriver_t *ctx );
  • piezodriver_pwm_start Piezo Driver start PWM module.

    err_t piezodriver_pwm_start ( piezodriver_t *ctx );
  • piezodriver_play_sound Piezo Driver play sound function.

    void piezodriver_play_sound ( piezodriver_t *ctx, uint16_t freq, uint8_t level, uint16_t duration );

Example Description

This example demonstrates the use of Piezo Driver Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    piezodriver_cfg_t piezodriver_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    piezodriver_cfg_setup( &piezodriver_cfg );
    PIEZODRIVER_MAP_MIKROBUS( piezodriver_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == piezodriver_init( &piezodriver, &piezodriver_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( PIEZODRIVER_ERROR == piezodriver_default_cfg ( &piezodriver ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Plays the Imperial March melody. Also logs an appropriate message on the USB UART.

void application_task ( void ) 
{
    log_printf( &logger, "Playing the Imperial March melody ...\r\n" );
    imperial_march( ); 
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

The minimal PWM Clock frequency required for this example is the frequency of tone C6 - 1047 Hz. In order to run this example and play all tones correctly, the user will need to decrease the MCU's main clock frequency in MCU Settings for certain architectures in order to get the required PWM clock frequency.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.PiezoDriver

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

SolidSwitch 3 Click

0

SolidSwitch 3 Click is a compact add-on board that contains a load switching device. This board features the BD8LB600FS-C, an automotive eight-channel low-side switch from Rohm Semiconductor. Every switch is controlled via an SPI interface and includes an N-channel MOSFET that supports a maximum current of 1A. The BD8LB600FS-C also has built-in protection circuits, namely the overcurrent, the thermal shutdown, the open-load detection, and the voltage lock-out circuits. Moreover, this device also possesses a diagnostic output function during abnormal detection.

[Learn More]

DIGI POT 4 click

5

DIGI POT 4 click is a digitally controlled dual potentiometer, with the resistance of 10 kΩ. It has a 10 bit resolution which allows for a very smooth linear wiper positioning through 1024 steps.

[Learn More]

PMIC Click

0

PMIC Click is a compact add-on board for efficient power management in rechargeable applications. This board features the nPM1300, an advanced Power Management Integrated Circuit (PMIC) from Nordic Semiconductor, offering integrated battery charging and advanced system power management features. The board includes an 800mA JEITA-compliant linear battery charger, two 200mA buck regulators, and configurable load switches, all housed in a compact QFN32 package.

[Learn More]