TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141469 times)
  2. FAT32 Library (74308 times)
  3. Network Ethernet Library (58852 times)
  4. USB Device Library (48918 times)
  5. Network WiFi Library (44679 times)
  6. FT800 Library (44220 times)
  7. GSM click (30933 times)
  8. mikroSDK (29814 times)
  9. PID Library (27414 times)
  10. microSD click (27352 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Barometer 13 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 168 times

Not followed.

License: MIT license  

Barometer 13 Click is a compact add-on board that measures air pressure in a specific environment. This board features the BMP585, a barometric pressure sensor from Bosch Sensortec. It has a nominal operating pressure range of 30 up to 125kPa and a temperature operating range from -40 to +85°C. The sensor provides true absolute pressure and temperature readings due to on-chip linearization and temperature compensation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Barometer 13 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Barometer 13 Click" changes.

Do you want to report abuse regarding "Barometer 13 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Barometer 13 Click

Barometer 13 Click is a compact add-on board that measures air pressure in a specific environment. This board features the BMP585, a barometric pressure sensor from Bosch Sensortec. It has a nominal operating pressure range of 30 up to 125kPa and a temperature operating range from -40 to +85°C. The sensor provides true absolute pressure and temperature readings due to on-chip linearization and temperature compensation.

barometer13_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Sep 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the Barometer 13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Barometer 13 Click driver.

Standard key functions :

  • barometer13_cfg_setup Config Object Initialization function.

    void barometer13_cfg_setup ( barometer13_cfg_t *cfg );
  • barometer13_init Initialization function.

    err_t barometer13_init ( barometer13_t *ctx, barometer13_cfg_t *cfg );
  • barometer13_default_cfg Click Default Configuration function.

    err_t barometer13_default_cfg ( barometer13_t *ctx );

Example key functions :

  • barometer13_get_measurement Barometer 13 get the measurement data function.

    err_t barometer13_get_measurement ( barometer13_t *ctx, float *pressure, float *temperature );
  • barometer13_set_odr Barometer 13 set the output data rate function.

    err_t barometer13_set_odr ( barometer13_t *ctx, uint8_t odr );
  • barometer13_set_int_cfg Barometer 13 set the interrupt config function.

    err_t barometer13_set_int_cfg ( barometer13_t *ctx, uint8_t int_en, uint8_t int_od, 
                                                      uint8_t int_pol, uint8_t int_mode );

Example Description

This example demonstrates the use of Barometer 13 Click board™ by reading and displaying the pressure and temperature measurements.

The demo application is composed of two sections :

Application Init

The initialization of I2C or SPI module and log UART. After driver initialization, the app sets the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    barometer13_cfg_t barometer13_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    barometer13_cfg_setup( &barometer13_cfg );
    BAROMETER13_MAP_MIKROBUS( barometer13_cfg, MIKROBUS_1 );
    err_t init_flag = barometer13_init( &barometer13, &barometer13_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BAROMETER13_ERROR == barometer13_default_cfg ( &barometer13 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, " ______________________ \r\n" );
}

Application Task

The demo application reads and displays the Pressure [mBar] and Temperature [degree Celsius] data. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{   
    float pressure = 0, temperature = 0;
    if ( ( BAROMETER13_OK == barometer13_get_measurement( &barometer13, &pressure, &temperature ) ) &&
         barometer13_get_interrupt( &barometer13 ) )
    {
        log_printf( &logger, " Pressure    : %.2f mBar \r\n", pressure );
        log_printf( &logger, " Temperature : %.2f degC \r\n", temperature );
        log_printf( &logger, " ______________________ \r\n" );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Barometer13

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Boost 7 Click

0

Boost 7 Click is a compact add-on board that steps up the voltage from its input (supply) to its output (load). This board features the BD8316GWL, a dual DC/DC converter from Rohm Semiconductor. Each converter inside the BD8316GWL is designed with up to 200mA current limit generating well-regulated positive and negative outputs of ±3.3V or ±5V, making the BD8316GWL ideal for various applications. In addition to the possibility of working with both mikroBUS™ power rails, it also provides the opportunity of using an external power supply with a very low voltage of 2.5V.

[Learn More]

R Meter click

1

R Meter click is a mikroBUS add-on board with circuitry for measuring the value of resistors. The board can be used to measure a wide range of resistors (from 0 to 1 Mega Ohm) The design is based on a non-inverting amplifier circuit, with the measured resistor placed in a feedback loop that influences the gain of the amplifier.

[Learn More]

Touchpad Click

0

Touchpad Click is a capacitive touch input device driven by Microchip’s low-powered MTCH6102 controller.

[Learn More]