TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (91 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139275 times)
  2. FAT32 Library (71759 times)
  3. Network Ethernet Library (57128 times)
  4. USB Device Library (47434 times)
  5. Network WiFi Library (43098 times)
  6. FT800 Library (42409 times)
  7. GSM click (29835 times)
  8. mikroSDK (28106 times)
  9. PID Library (26886 times)
  10. microSD click (26201 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Silent Step 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 79 times

Not followed.

License: MIT license  

Silent Step 2 Click is a compact add-on board that allows extremely smooth and silent operation of the connected motor. This board features the TMC2130, a high-performance two-phase stepper motor driver from Analog Devices. The driver uses an external motor power supply of 4.75 up to 43V to power a 2-phase stepper motor up to 2A coil current (2.5A peak).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Silent Step 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Silent Step 2 Click" changes.

Do you want to report abuse regarding "Silent Step 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Silent Step 2 Click

Silent Step 2 Click is a compact add-on board that allows extremely smooth and silent operation of the connected motor. This board features the TMC2130, a high-performance two-phase stepper motor driver from Analog Devices. The driver uses an external motor power supply of 4.75 up to 43V to power a 2-phase stepper motor up to 2A coil current (2.5A peak).

silentstep2_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Oct 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the Silent Step 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Silent Step 2 Click driver.

Standard key functions :

  • silentstep2_cfg_setup Config Object Initialization function.

    void silentstep2_cfg_setup ( silentstep2_cfg_t *cfg );
  • silentstep2_init Initialization function.

    err_t silentstep2_init ( silentstep2_t *ctx, silentstep2_cfg_t *cfg );
  • silentstep2_default_cfg Click Default Configuration function.

    err_t silentstep2_default_cfg ( silentstep2_t *ctx );

Example key functions :

  • silentstep2_rotate_by_angle Silent Step 2 rotates the shaft through a desired angle function.

    err_t silentstep2_rotate_by_angle ( silentstep2_t *ctx, uint8_t step_speed, float angle, uint16_t res_360 );
  • silentstep2_set_direction Silent Step 2 sets the clockwise or counterclockwise direction movement function.

    void silentstep2_set_direction ( silentstep2_t *ctx, uint8_t dir );

Example Description

This example demonstrates the use of Silent Step 2 Click board™ by driving the motor in both directions for a desired rotation angle.

The demo application is composed of two sections :

Application Init

The initialization of I2C and SPI module and log UART. After driver initialization, the app sets the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    silentstep2_cfg_t silentstep2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    silentstep2_cfg_setup( &silentstep2_cfg );
    SILENTSTEP2_MAP_MIKROBUS( silentstep2_cfg, MIKROBUS_1 );
    err_t init_flag = silentstep2_init( &silentstep2, &silentstep2_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( SILENTSTEP2_ERROR == silentstep2_default_cfg ( &silentstep2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "-----------------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

The application task represents an example that demonstrates the use of the Silent Step 2 Click board™ with which the user can sequentially move the motor. The first part of the sequence executes the clockwise/counterclockwise motor movement for an angle of 90 degrees with a step speed of 50%, all the way to the last sequence of the same movement routine of 360 degree angle with a step speed of 90%. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
    log_printf( &logger, " Clockwise motion\r\n" );
    log_printf( &logger, " Angle of rotation :  90 degrees\r\n" );
    log_printf( &logger, " Step speed        :  50 %%\r\n" );
    silentstep2_set_direction( &silentstep2, SILENTSTEP2_DIRECTION_CLOCKWISE );
    if ( SILENTSTEP2_OK == silentstep2_rotate_by_angle( &silentstep2, 50, 90, SILENTSTEP2_STEP_RES_200 ) )
    {
        log_printf( &logger, "-----------------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    log_printf( &logger, " Counterclockwise motion\r\n" );
    log_printf( &logger, " Angle of rotation :  180 deg\r\n" );
    log_printf( &logger, " Step speed        :  50 %%\r\n" );
    silentstep2_set_direction( &silentstep2, SILENTSTEP2_DIRECTION_COUNTERCLOCKWISE );
    if ( SILENTSTEP2_OK == silentstep2_rotate_by_angle( &silentstep2, 50, 180, SILENTSTEP2_STEP_RES_200 ) )
    {
        log_printf( &logger, "-----------------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    log_printf( &logger, " Clockwise motion\r\n" );
    log_printf( &logger, " Angle of rotation : 270 deg\r\n" );
    log_printf( &logger, " Step speed        :  50 %% \r\n" );
    silentstep2_set_direction( &silentstep2, SILENTSTEP2_DIRECTION_CLOCKWISE );
    if ( SILENTSTEP2_OK == silentstep2_rotate_by_angle( &silentstep2, 50, 270, SILENTSTEP2_STEP_RES_200 ) )
    {
        log_printf( &logger, "-----------------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    log_printf( &logger, " Counterclockwise motion\r\n" );
    log_printf( &logger, " Angle of rotation : 360 deg\r\n" );
    log_printf( &logger, " Step speed        : 90 %%\r\n" );
    silentstep2_set_direction( &silentstep2, SILENTSTEP2_DIRECTION_COUNTERCLOCKWISE );
    if ( SILENTSTEP2_OK == silentstep2_rotate_by_angle( &silentstep2, 90, 360, SILENTSTEP2_STEP_RES_200 ) )
    {
        log_printf( &logger, "-----------------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    log_printf( &logger, " Clockwise motion\r\n" );
    log_printf( &logger, " Angle of rotation : 360 deg\r\n" );
    log_printf( &logger, " Step speed        : 90 %% \r\n" );
    silentstep2_set_direction( &silentstep2, SILENTSTEP2_DIRECTION_CLOCKWISE );
    if ( SILENTSTEP2_OK == silentstep2_rotate_by_angle( &silentstep2, 90, 360, SILENTSTEP2_STEP_RES_200 ) )
    {
        log_printf( &logger, "-----------------------------\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SilentStep2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Magnetic Rotary 6 Click

0

Magnetic Rotary 6 Click is a compact add-on board for accurate magnet-position sensing. This board features the AS5247U, an SPI-configurable high-resolution dual rotary position sensor for fast absolute angle measurement over a full 360-degree range from ams AG. The AS5047D is equipped with revolutionary integrated dynamic angle error compensation (DAEC™) with almost 0 latency and offers a robust design that suppresses the influence of any homogenous external stray magnetic field. It also comes with onboard headers reserved for incremental and commutation signals of their respective A/B/I and U/V/W signals, with a maximum resolution of 16384 steps / 4096 pulses per revolution, alongside embedded self-diagnostics features.

[Learn More]

Presence Click

0

Presence Click is an infrared sensing Click board™ which can be used for presence sensing, motion detection, and a remote overtemperature protection.

[Learn More]

IPS Display Click

0

IPS Display Click is a compact add-on board that displays high-resolution graphics in embedded applications. This board features the ER-TFT1.14-2, a 1.14inch TFT LCD display from BuyDisplay, part of EastRising Technology, and utilizes the ST7789V controller for 262K color output. The display offers a 135x240 pixel resolution, operates through a 3-wire SPI interface, and includes additional control lines such as RST and RS for precise display management. Its small form factor and high-resolution output make it suitable for various projects, including handheld devices, smart displays, and control panels requiring clear visual output.

[Learn More]