TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142096 times)
  2. FAT32 Library (75361 times)
  3. Network Ethernet Library (59524 times)
  4. USB Device Library (49549 times)
  5. Network WiFi Library (45351 times)
  6. FT800 Library (44975 times)
  7. GSM click (31485 times)
  8. mikroSDK (30539 times)
  9. microSD click (27863 times)
  10. PID Library (27631 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

7-SEG 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: LED segment

Downloaded: 172 times

Not followed.

License: MIT license  

7-SEG 2 Click is a compact add-on board that represents an easy solution for adding a numeric or hexadecimal display to your application. This board features the LDT-M2804RI, a three-digit seven-segment display from Lumex. The display has a 0.28” height, red LED segments, gray faces, and white diffused segments. All three digits come with a following dot point that can be used as a decimal point in displaying the number values.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "7-SEG 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "7-SEG 2 Click" changes.

Do you want to report abuse regarding "7-SEG 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


7-SEG 2 Click

7-SEG 2 Click is a compact add-on board that represents an easy solution for adding a numeric or hexadecimal display to your application. This board features the LDT-M2804RI, a three-digit seven-segment display from Lumex. The display has a 0.28” height, red LED segments, gray faces, and white diffused segments. All three digits come with a following dot point that can be used as a decimal point in displaying the number values.

7seg2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2023.
  • Type : I2C type

Software Support

We provide a library for the 7-SEG 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for 7-SEG 2 Click driver.

Standard key functions :

  • c7seg2_cfg_setup Config Object Initialization function.

    void c7seg2_cfg_setup ( c7seg2_cfg_t *cfg );
  • c7seg2_init Initialization function.

    err_t c7seg2_init ( c7seg2_t *ctx, c7seg2_cfg_t *cfg );
  • c7seg2_default_cfg Click Default Configuration function.

    err_t c7seg2_default_cfg ( c7seg2_t *ctx );

Example key functions :

  • c7seg2_set_segments_current This function is used to set the current value of the segment's leds.

    err_t c7seg2_set_segments_current ( c7seg2_t *ctx, float current_val );
  • c7seg2_write_segment This function is used to write a number [0..9] to a selected segment [0..2] with or w/o a decimal pointer.

    err_t c7seg2_write_segment ( c7seg2_t *ctx, uint8_t segment, uint8_t number, uint8_t dpt );
  • c7seg2_write_number This function is used to write a number [0..999] to a selected segment [0..2] with or w/o a decimal pointer.

    err_t c7seg2_write_number ( c7seg2_t *ctx, uint16_t number, uint8_t dpt );

Example Description

The example demonstrates the use of the 7-SEG 2 Click board by displaying a counter number [0.00-9.99] which is incremented by 0.01 at a desired rate.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs default configuration, sets the device in output enabled mode and checks communication by reading device ID.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    c7seg2_cfg_t c7seg2_pnp_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.    
    c7seg2_cfg_setup( &c7seg2_pnp_cfg );
    C7SEG2_MAP_MIKROBUS( c7seg2_pnp_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == c7seg2_init( &c7seg2, &c7seg2_pnp_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    uint8_t device_id = 0;
    c7seg2_read_reg( &c7seg2, C7SEG2_REG_DEVICE_ID, &device_id );
    if ( C7SEG2_DEVICE_ID != device_id )
    {
        log_error( &logger, " Communication error." );
        for ( ; ; );
    }

    if ( C7SEG2_ERROR == c7seg2_default_cfg ( &c7seg2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Writes a counter number [0.00-9.99] to the display as frequently as possible. The displayed counter value is incremented by 0.01 at a rate defined with the C7SEG2_NUM_COUNTER_RATE macro.

void application_task ( void )
{
    static uint16_t counter = 0;
    static uint16_t time = 0;

    c7seg2_write_number( &c7seg2, counter, C7SEG2_DP_AT_SEGMENT_2 );

    if ( ++time >= C7SEG2_NUM_COUNTER_RATE ) 
    {
        if ( ++counter > C7SEG2_MAX_NUMBER )
        {
            counter = 0;
        }
        time = 0;
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.7SEG2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

PWR Meter 3 90A Click

0

PWR Meter 3 Click - 90A is a compact add-on board that measures voltage and current through the connected load. This board features the ACS37800KMACLU-090B3-I2C, an I2C-configurable power monitoring solution from Allegro MicroSystems, which simplifies the addition of power monitoring to many AC/DC powered systems. The ACS37800KMACLU-090B3-I2C Hall-effect-based current sensing technology achieves reinforced isolation ratings (4800 VRMS) alongside a reliable ±90A bidirectional current sensing. It also has two LED indicators for the realization of visual detection of some anomalies in operation, such as under/overvoltage and fast overcurrent fault detection.

[Learn More]

Load Cell 6 Click

0

Load Cell 6 Click is a compact add-on board representing a weigh scale solution. This board features the MAX11270, a high-performance 24-bit delta-sigma ADC that achieves excellent 130dB SNR while dissipating an ultra-low 10mW from Maxim Integrated, now part of Analog Devices. This SPI-configurable ADC sample rates up to 64ksps allow precision DC and AC measurements, with integral non-linearity guaranteed to 4ppm maximum. The MAX11270 offers a 6.5nV/√Hz noise programmable gain amplifier with gain settings between 1x to 128x. Optional buffers are also included to isolate the signal inputs from the switched capacitor sampling network, which allows the MAX11270 to be used with high-impedance sources without compromising the available dynamic range.

[Learn More]

Nano Power 2 click

5

Nano Power 2 click is a very low power voltage comparator, aimed at portable and battery-powered applications. It allows detecting a difference of two voltage potentials, applied on two input pins.

[Learn More]