TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139842 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Rotary B 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: Rotary encoder

Downloaded: 104 times

Not followed.

License: MIT license  

Rotary B 2 Click is a compact add-on board that allows you to add a precision input knob to your design. This board features the TLC5925, a low-power 16-channel constant-current LED sink driver from Texas Instruments that, combined with a high-quality rotary encoder from ALPS, the EC12D1564402, allows you to add a precision input knob to your design. It also features an LED ring composed of 16 individual blue LEDs that can be used to represent the encoder position more visually.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Rotary B 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Rotary B 2 Click" changes.

Do you want to report abuse regarding "Rotary B 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Rotary B 2 Click

Rotary B 2 Click is a compact add-on board that allows you to add a precision input knob to your design. This board features the TLC5925, a low-power 16-channel constant-current LED sink driver from Texas Instruments that, combined with a high-quality rotary encoder from ALPS, the EC12D1564402, allows you to add a precision input knob to your design. It also features an LED ring composed of 16 individual blue LEDs that can be used to represent the encoder position more visually.

rotaryb2_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Nov 2023.
  • Type : SPI type

Software Support

We provide a library for the Rotary B 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Rotary B 2 Click driver.

Standard key functions :

  • rotaryb2_cfg_setup Config Object Initialization function.

    void rotaryb2_cfg_setup ( rotaryb2_cfg_t *cfg );
  • rotaryb2_init Initialization function.

    err_t rotaryb2_init ( rotaryb2_t *ctx, rotaryb2_cfg_t *cfg );
  • rotaryb2_default_cfg Click Default Configuration function.

    err_t rotaryb2_default_cfg ( rotaryb2_t *ctx );

Example key functions :

  • rotaryb2_set_led_pos This function turns on the LED for the selected LED position.

    err_t rotaryb2_set_led_pos ( rotaryb2_t *ctx, uint8_t led_pos );
  • rotaryb2_set_led_data This function, using SPI serial interface, writes a desired 16-bit data.

    err_t rotaryb2_set_led_data ( rotaryb2_t *ctx, uint16_t data_in );
  • rotaryb2_get_state_switch This function return rotary encoder switch signal, states of the SW(INT).

    uint8_t rotaryb2_get_state_switch ( rotaryb2_t *ctx );

Example Description

This library contains the API for the Rotary B 2 Click driver to control LEDs states and a rotary encoder position readings.

The demo application is composed of two sections :

Application Init

Initialization of SPI module and log UART. After the driver init, the app executes a default configuration and turn off all LEDs.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    rotaryb2_cfg_t rotaryb2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    rotaryb2_cfg_setup( &rotaryb2_cfg );
    ROTARYB2_MAP_MIKROBUS( rotaryb2_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == rotaryb2_init( &rotaryb2, &rotaryb2_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( ROTARYB2_ERROR == rotaryb2_default_cfg ( &rotaryb2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This example demonstrates the use of the Rotary B 2 Click board™. The demo example shows the functionality of a rotary encoder used to control LEDs.

void application_task ( void )
{
    if ( ROTARYB2_OK == rotaryb2_set_led_data( &rotaryb2, led_data ) )
    {
        rotaryb2_switch_detection( );
        rotaryb2_encoder_mechanism( );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.RotaryB2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

5G NB IoT Click

0

5G NB IoT Click is a Click board™ based on Gemalto's Cinterion® ENS22 NB-IoT Wireless Module platform that boosts highly efficient future 5G connectivity for the IoT.

[Learn More]

GMR Angle Click

0

The GMR Angle Click is a Click board™ that features the TLI5012B E1000, which is a pre-calibrated 360° angle sensor that detects the orientation of a magnetic field, made by Infineon. The GMR Angle Click is ideal for angular position sensing in industrial and consumer applications such as electrical commutated motor (e.g. BLDC), fans or pumps.

[Learn More]

MCP2517FD Click

0

MCP2517FD Click is a complete CAN solution which carries the MCP2517FD CAN FD controller and ATA6563 high-speed CAN transceiver from Microchip, as well as a DB9 9-pin connector.

[Learn More]