TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142112 times)
  2. FAT32 Library (75388 times)
  3. Network Ethernet Library (59549 times)
  4. USB Device Library (49550 times)
  5. Network WiFi Library (45358 times)
  6. FT800 Library (44991 times)
  7. GSM click (31486 times)
  8. mikroSDK (30567 times)
  9. microSD click (27879 times)
  10. PID Library (27634 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MICRF TX Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Sub-1 GHz Transceivers

Downloaded: 138 times

Not followed.

License: MIT license  

MICRF TX Click is a compact add-on board designed as a powerful RF transmitter for data transmission over the 315MHz frequency band. This board features the MICRF112, a high-performance RF transmitter IC from Microchip, renowned for its efficiency in operation. This Click board™ stands out for its ease of use, requiring only a simple crystal oscillator to set the frequency, and supports both ASK and FSK modulation types with a Phase-Locked Loop (PLL) for stable frequency.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MICRF TX Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MICRF TX Click" changes.

Do you want to report abuse regarding "MICRF TX Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


MICRF TX Click

MICRF TX Click is a compact add-on board designed as a powerful RF transmitter for data transmission over the 315MHz frequency band. This board features the MICRF112, a high-performance RF transmitter IC from Microchip, renowned for its efficiency in operation. This Click board™ stands out for its ease of use, requiring only a simple crystal oscillator to set the frequency, and supports both ASK and FSK modulation types with a Phase-Locked Loop (PLL) for stable frequency.

micrftx_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Nov 2023.
  • Type : GPIO type

Software Support

We provide a library for the MICRF TX Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for MICRF TX Click driver.

Standard key functions :

  • micrftx_cfg_setup Config Object Initialization function.

    void micrftx_cfg_setup ( micrftx_cfg_t *cfg );
  • micrftx_init Initialization function.

    err_t micrftx_init ( micrftx_t *ctx, micrftx_cfg_t *cfg );

Example key functions :

  • micrftx_send_data This function builds and sends a packet of data. The packet format is as follows (MSB first, manchester IEEE 802.3): MICRFTX_TRAINING_BYTES, PREABMLE, LEN, DATA_IN, CRC16 (calculated from whole packet excluding training bytes).
    static void micrftx_send_data ( micrftx_t *ctx, uint16_t preamble, uint8_t *data_in, uint8_t len );

Example Description

This example demonstrates the use of MICRF TX Click board by sending a predefined message to the receiver.

The demo application is composed of two sections :

Application Init

Initialized the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;          /**< Logger config object. */
    micrftx_cfg_t micrftx_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    micrftx_cfg_setup( &micrftx_cfg );
    MICRFTX_MAP_MIKROBUS( micrftx_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == micrftx_init( &micrftx, &micrftx_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Sends a predefined message every 3 seconds and displays it on the USB UART.

void application_task ( void )
{
    log_printf ( &logger, " Sending data: %s\r\n\n", ( char * ) MICRFTX_MESSAGE );
    micrftx_send_data ( &micrftx, MICRFTX_PREAMBLE, MICRFTX_MESSAGE, strlen ( MICRFTX_MESSAGE ) );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

The MICRF RX Click board is a compatible receiver for the MICRF TX Click. Here are a few steps for troubleshooting if you are experiencing issues running this example:

  • Make sure the MICRF TX Click is set to ASK mode with on-board jumpers.
  • Check the MCU clock configuration, use an external oscillator instead of the MCU's internal one for better accuracy on manchester data rate delay.
  • Measure the actual data rate on the data line and adjust the MICRFTX_MAN_BIT_LEN_US value accordingly.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MICRFTX

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Inclinometer 3 Click

0

Inclinometer 3 Click is a compact add-on board for precise tilt and leveling measurement applications. This board features the SCL3400-D01, a two-axis inclinometer sensor from Murata, leveraging advanced capacitive 3D-MEMS technology. It features a high-performance mixed-signal ASIC with a flexible SPI digital interface housed in a robust 12-pin pre-molded casing, ensuring long-term reliability and performance.

[Learn More]

GNSS 12 Click

0

GNSS 12 Click is a compact add-on board that provides fast positioning capability. This board features the CAM-M8C, a professional-grade GNSS module built on the high-performing M8 GNSS engine from u-blox. This module utilizes concurrent reception of up to three GNSS systems (GPS/Galileo together with either BeiDou or GLONASS), offering high sensitivity and strong signal levels. Besides internal, the CAM-M8C can use an optional external active antenna. It has a configurable host interface, advanced jamming/spoofing detection, and provides outstanding positioning accuracy even in GNSS-hostile environments.

[Learn More]

SPI T6963C Examples

0

Examples shows simple use of SPI T6963C Library

[Learn More]