TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142094 times)
  2. FAT32 Library (75352 times)
  3. Network Ethernet Library (59524 times)
  4. USB Device Library (49548 times)
  5. Network WiFi Library (45341 times)
  6. FT800 Library (44957 times)
  7. GSM click (31467 times)
  8. mikroSDK (30515 times)
  9. microSD click (27837 times)
  10. PID Library (27628 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MICRF RX 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: Sub-1 GHz Transceivers

Downloaded: 149 times

Not followed.

License: MIT license  

MICRF RX 2 Click is a compact add-on board for high-sensitivity applications, including remote keyless entry, tire pressure monitoring systems, and remote actuation systems. This board features the MICRF219A, an ASK/OOK 433MHz receiver with Auto-Poll and RSSI from Microchip to offer top-notch RF performance. This super-heterodyne, image-reject RF receiver provides a -110dBm sensitivity at 1kbps and a 0.1% Bit Error Rate (BER), supporting adjustable demodulator filter bandwidths for bit rates up to 20kbps.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MICRF RX 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MICRF RX 2 Click" changes.

Do you want to report abuse regarding "MICRF RX 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


MICRF RX 2 Click

MICRF RX 2 Click is a compact add-on board for high-sensitivity applications, including remote keyless entry, tire pressure monitoring systems, and remote actuation systems. This board features the MICRF219A, an ASK/OOK 433MHz receiver with Auto-Poll and RSSI from Microchip to offer top-notch RF performance. This super-heterodyne, image-reject RF receiver provides a -110dBm sensitivity at 1kbps and a 0.1% Bit Error Rate (BER), supporting adjustable demodulator filter bandwidths for bit rates up to 20kbps.

micrfrx2_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Nov 2023.
  • Type : GPIO type

Software Support

We provide a library for the MICRF RX 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for MICRF RX 2 Click driver.

Standard key functions :

  • micrfrx2_cfg_setup Config Object Initialization function.

    void micrfrx2_cfg_setup ( micrfrx2_cfg_t *cfg );
  • micrfrx2_init Initialization function.

    err_t micrfrx2_init ( micrfrx2_t *ctx, micrfrx2_cfg_t *cfg );

Example key functions :

  • micrfrx2_enable_device This function enables device by setting the SHD pin to low logic state.

    void micrfrx2_enable_device ( micrfrx2_t *ctx );
  • micrfrx2_wait_ready This function waits for all training bytes to arrive which indicates data ready.

    static void micrfrx2_wait_ready ( micrfrx2_t *ctx );
  • micrfrx2_read_packet This function reads data packet and stores it in a packet_buf only if the MICRFRX2_PREAMBLE bytes are received successfully.

    static uint8_t micrfrx2_read_packet ( micrfrx2_t *ctx );

Example Description

This example demonstrates the use of MICRF RX 2 Click board by reading and parsing packet messages received from the transmitter.

The demo application is composed of two sections :

Application Init

Initializes the driver and enables the device.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    micrfrx2_cfg_t micrfrx2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    micrfrx2_cfg_setup( &micrfrx2_cfg );
    MICRFRX2_MAP_MIKROBUS( micrfrx2_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == micrfrx2_init( &micrfrx2, &micrfrx2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    micrfrx2_enable_device ( &micrfrx2 );

    log_info( &logger, " Application Task " );
}

Application Task

Waits for a data ready indication, then reads all packet data, verifies the CRC bytes in a packet, and displays its data as well as the RSSI value on the USB UART.

void application_task ( void )
{
    static float rssi_v = 0;
    static uint8_t packet_len = 0;
    static uint8_t msg_cnt = 0;
    static uint16_t crc = 0;

    log_printf( &logger, "\r\n Waiting for data ready...\r\n" );
    micrfrx2_wait_ready ( &micrfrx2 );
    packet_len = micrfrx2_read_packet ( &micrfrx2 );
    if ( packet_len )
    {
        micrfrx2_read_rssi_voltage ( &micrfrx2, &rssi_v );
        crc = ( ( uint16_t ) packet_buf[ packet_len - 2 ] << 8 ) | packet_buf[ packet_len - 1 ];
        if ( crc == micrftx2_calculate_crc16 ( packet_buf, packet_len - 2 ) )
        {
            log_printf( &logger, " Received message: " );
            for ( msg_cnt = 0; msg_cnt < packet_buf[ 2 ]; msg_cnt++ )
            {
                log_printf( &logger, "%c", ( uint16_t ) packet_buf[ msg_cnt + 3 ] );
            }
            log_printf( &logger, "\r\n RSSI: %.1f dBm\r\n", MICRFRX2_RSSI_V_TO_DBM ( rssi_v ) );
        }
    }
    Delay_ms ( 100 );
}

Note

The OOK TX Click board is a compatible transmitter for the MICRF RX 2 Click. Here are a few steps for troubleshooting if you are experiencing issues running this example:

  • Check the MCU clock configuration, use an external oscillator instead of the MCU's internal one for better accuracy on manchester data rate delay.
  • Measure the actual data rate on the data line and adjust the MICRFRX2_MAN_BIT_LEN_US value accordingly.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MICRFRX2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Hall Current 12 Click

0

Hall Current 12 Click is a compact add-on board that provides economical and precise AC or DC current sensing solutions. This board features the TMCS1100, a galvanically isolated Hall-effect current sensor capable of DC or AC current measurement with high accuracy, excellent linearity, and temperature stability from Texas Instruments. It enables the lowest drift, <1% full-scale error, and highest accuracy over time and temperature. It also provides a reliable 600V lifetime working voltage and 3kVRMS isolation between the current path and circuitry with uni/bidirectional current sensing. Besides, the user is allowed to process the output signal in analog or digital form.

[Learn More]

ROTARY G Click

0

Rotary Click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 green LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU. The LED ring is controlled through SPI lines (CS, SCK, MISO, MOSI). Rotary Click can be used with either a 3.3V or 5V power supply.

[Learn More]

Color 17 Click

0

Color 17 Click is a compact add-on board representing an accurate color-sensing solution. This board features the OPT4048, a high-speed precision tristimulus XYZ color sensor from Texas Instruments. The sensor has four sensing channels and uses precision optical filters to mimic the normal vision of the human eye. The OPT4048 also has 12 configurable conversion times that range from 600μs up to 800ms, with measurements that can be read synchronously or asynchronously. It is not excessively sensitive to micro-shadows and the small particles on the optical surface.

[Learn More]