TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57255 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MagAccel Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 85 times

Not followed.

License: MIT license  

Mag&Accel Click is a compact add-on board representing a moving object and magnetic switch as a single solution. This board features the NMH1000, a Hall-effect magnetic field switch, and the FXLS8974CF, a 3-axis low-g accelerometer, both from NXP Semiconductor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MagAccel Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MagAccel Click" changes.

Do you want to report abuse regarding "MagAccel Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


MagAccel Click

Mag&Accel Click is a compact add-on board representing a moving object and magnetic switch as a single solution. This board features the NMH1000, a Hall-effect magnetic field switch, and the FXLS8974CF, a 3-axis low-g accelerometer, both from NXP Semiconductor.

magaccel_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Nov 2023.
  • Type : I2C type

Software Support

We provide a library for the MagAccel Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for MagAccel Click driver.

Standard key functions :

  • magaccel_cfg_setup Config Object Initialization function.

    void magaccel_cfg_setup ( magaccel_cfg_t *cfg );
  • magaccel_init Initialization function.

    err_t magaccel_init ( magaccel_t *ctx, magaccel_cfg_t *cfg );
  • magaccel_default_cfg Click Default Configuration function.

    err_t magaccel_default_cfg ( magaccel_t *ctx );

Example key functions :

  • magaccel_get_axes_data This function reads the accelerometer sensor axes data.

    err_t magaccel_get_axes_data ( magaccel_t *ctx, magaccel_axes_t *axes );
  • magaccel_set_op_mode This function sets the desired operating mode of the sensor.

    err_t magaccel_set_op_mode ( magaccel_t *ctx, uint8_t op_mode );
  • magaccel_check_mag_field This function checks the magnetic field y by reading the states of the FLD (AN) pin.

    uint8_t magaccel_check_mag_field ( magaccel_t *ctx );

Example Description

This library contains API for the Mag&Accel Click driver. The library initializes and defines the I2C drivers to write and read data from registers, as well as the default configuration for reading accelerator data.

The demo application is composed of two sections :

Application Init

The initialization of the I2C module, log UART, and additional pins. After the driver init, the app executes a default configuration.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    magaccel_cfg_t magaccel_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    magaccel_cfg_setup( &magaccel_cfg );
    MAGACCEL_MAP_MIKROBUS( magaccel_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == magaccel_init( &magaccel, &magaccel_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( MAGACCEL_ERROR == magaccel_default_cfg ( &magaccel ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "_________________\r\n" );
}

Application Task

This example demonstrates the use of the Mag&Accel Click board. Measures and displays acceleration data for the X-axis, Y-axis, and Z-axis and the presence of a magnetic field. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    if ( MAGACCEL_DATA_READY == magaccel_check_data_ready( &magaccel ) )
    {
        magaccel_axes_t acc_axis;
        magaccel_get_axes_data( &magaccel, &acc_axis );

        if ( MAGACCEL_DET_MAG_FIELD == magaccel_check_mag_field( &magaccel ) )
        {
            log_printf( &logger, " Presence of a magnetic field\r\n" );
            log_printf( &logger, "_________________\r\n" );
        }

        log_printf( &logger, " Accel X: %.2f mg\r\n", acc_axis.x );
        log_printf( &logger, " Accel Y: %.2f mg\r\n", acc_axis.y );
        log_printf( &logger, " Accel Z: %.2f mg\r\n", acc_axis.z );
        log_printf( &logger, "_________________\r\n" );
        Delay_ms ( 100 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MagAccel

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Ambient 21 Click

0

Ambient 21 Click is a compact add-on board used to measure the amount of the present ambient light. This board features ams AG's TSL2591, a very-high sensitivity light-to-digital converter that transforms light intensity to a digital signal output capable of the direct I2C interface. It combines one broadband photodiode (visible plus infrared) and one infrared-responding photodiode on a single CMOS integrated circuit, providing a flexible and wide operating range of up to 88klx with an excellent responsivity close to the human eyes' response. The TSL2591 also has a programmable interrupt function and an integrated filter to reduce unwanted IR signals from the environment, improving lux accuracy across various light sources.

[Learn More]

Altitude click

0

This is a simple example of using MPL3115A2 sensor to calculate the current altitude. Resulting altitude in meters is displayed on the Lcd.

[Learn More]

Brushless 12 Click

0

Brushless 12 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the L6235, DMOS fully integrated 3-phase motor driver with overcurrent protection from STMicroelectronics.

[Learn More]