TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142066 times)
  2. FAT32 Library (75294 times)
  3. Network Ethernet Library (59491 times)
  4. USB Device Library (49522 times)
  5. Network WiFi Library (45288 times)
  6. FT800 Library (44914 times)
  7. GSM click (31432 times)
  8. mikroSDK (30441 times)
  9. microSD click (27802 times)
  10. PID Library (27622 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

I2C 1-Wire 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.4

mikroSDK Library: 2.0.0.0

Category: 1-Wire

Downloaded: 160 times

Not followed.

License: MIT license  

I2C 1-Wire 2 Click is a compact add-on board bridging I2C master interfaces with 1-Wire slave devices, ideal for simplifying complex communication protocols. This board features the DS2485, an advanced 1-Wire master with memory from Analog Devices. It features adjustable internal timers for precise 1-Wire signal management, relieving the host processor of timing-sensitive operations, and supports standard and overdrive communication speeds.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "I2C 1-Wire 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "I2C 1-Wire 2 Click" changes.

Do you want to report abuse regarding "I2C 1-Wire 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


I2C 1-Wire 2 Click

I2C 1-Wire 2 Click is a compact add-on board bridging I2C master interfaces with 1-Wire slave devices, ideal for simplifying complex communication protocols. This board features the DS2485, an advanced 1-Wire master with memory from Analog Devices. It features adjustable internal timers for precise 1-Wire signal management, relieving the host processor of timing-sensitive operations, and supports standard and overdrive communication speeds.

i2c1wire2_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Dec 2023.
  • Type : I2C type

Software Support

We provide a library for the I2C 1-Wire 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for I2C 1-Wire 2 Click driver.

Standard key functions :

  • i2c1wire2_cfg_setup Config Object Initialization function.

    void i2c1wire2_cfg_setup ( i2c1wire2_cfg_t *cfg );
  • i2c1wire2_init Initialization function.

    err_t i2c1wire2_init ( i2c1wire2_t *ctx, i2c1wire2_cfg_t *cfg );
  • i2c1wire2_default_cfg Click Default Configuration function.

    err_t i2c1wire2_default_cfg ( i2c1wire2_t *ctx );

Example key functions :

  • i2c1wire2_master_reset This function is used to reset device, and return all configuration registers to the default values.

    err_t i2c1wire2_master_reset ( i2c1wire2_t *ctx );
  • i2c1wire2_write_port_cfg This function is used to write a 1-Wire configuration register.

    err_t i2c1wire2_write_port_cfg ( i2c1wire2_t *ctx, uint8_t reg, uint8_t *data_in );
  • i2c1wire2_search This function is used to perform 1-Wire Search algorithm and return one device ROMID.

    err_t i2c1wire2_search ( i2c1wire2_t *ctx, uint8_t *flag, uint8_t *rom_id, uint8_t *last_flag, uint8_t param_data, uint8_t command_code );

Example Description

This example demonstrates the use of the I2C 1-Wire 2 Click board by searching if a device is connected and reading its ROMID.

The demo application is composed of two sections :

Application Init

Initialization of I2C module, log UART and perform Click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    i2c1wire2_cfg_t i2c1wire2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    i2c1wire2_cfg_setup( &i2c1wire2_cfg );
    I2C1WIRE2_MAP_MIKROBUS( i2c1wire2_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == i2c1wire2_init( &i2c1wire2, &i2c1wire2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( I2C1WIRE2_ERROR == i2c1wire2_default_cfg ( &i2c1wire2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Performing 1-Wire Search algorithm to find if any device is connected. If a device is connected and detected, its ROMID will be read and displayed.

void application_task ( void ) 
{
    err_t error_flag;
    uint8_t flag;
    uint8_t last_flag;
    uint8_t rom_id[ 8 ] = { 0 };
    #define I2C1WIRE2_DEVICE_SEARCH_CODE            0xF0

    error_flag = i2c1wire2_search ( &i2c1wire2, &flag, rom_id, &last_flag, I2C1WIRE2_SEARCH_RESET | 
                                    I2C1WIRE2_SEARCH_1WIRE_RESET, I2C1WIRE2_DEVICE_SEARCH_CODE );
    if ( I2C1WIRE2_OK == error_flag )
    {   
        if ( I2C1WIRE2_RESULT_BYTE_OK == flag )
        {
            log_printf( &logger, " Device found: \r\n" );
            log_printf( &logger, " Device ROMID: 0x" );
            for ( uint8_t n_cnt = 0; n_cnt < 8; n_cnt++ )
            {
                log_printf( &logger, "%.2X", ( uint16_t ) rom_id[ n_cnt ] );
            }
            log_printf( &logger, " \r\n" );
            log_printf( &logger, " Last device flag %d \r\n", last_flag );
        }
        else if ( I2C1WIRE2_NO_DEVICE_DETECTED == flag )
        {
            log_printf( &logger, " No device detected \r\n" );
        }
        else if ( I2C1WIRE2_NO_PRESENCE_PULS == flag )
        {
            log_printf( &logger, " No presence puls \r\n" );
        }
    }
    else 
    {
        log_printf( &logger, " ERROR \r\n" );
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.I2C1Wire2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Peltier Click

0

The Peltier Click is a Click board™ which utilizes the SPV1050, an ultralow power energy harvester and battery charger from STMicroelectronics. The Peltier Click can charge lithium battery using thermoelectric energy harvesting device (TEG).

[Learn More]

Clock Gen 4 click

5

Clock Gen 4 Click is a compact add-on board that contains both a clock generator and a multiplier/jitter reduced clock frequency synthesizer. This board features the CS2200-CP, an analog PLL architecture comprised of a Delta-Sigma fractional-N frequency synthesizer from Cirrus Logic.

[Learn More]

PHT click

5

PHT Click is a compact add-on board that contains a PHT combo sensor. This board features the MS8607, a digital combination sensor providing 3 environmental measurements all-in-one: pressure, humidity, and temperature from TE Connectivity Measurement Specialties.

[Learn More]