TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140166 times)
  2. FAT32 Library (72621 times)
  3. Network Ethernet Library (57641 times)
  4. USB Device Library (47953 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28668 times)
  9. PID Library (27055 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Cooler Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 59 times

Not followed.

License: MIT license  

Cooler Click is a compact add-on board designed as a cooling solution to manage heat in electronic systems efficiently. This board features the DRV8213, a brushless DC motor driver from Texas Instruments, ensuring a high-performance operation. This board also directly integrates a TMP007 temperature sensor and an MF25060V2-1000U-A99 cooling fan onto its platform, offering a compact and ready-to-use cooling system. It operates across a wide PWM frequency range from 0 to 100kHz, supports both 3.3V and 5V logic levels, and features several protection mechanisms, including undervoltage lockout, overcurrent protection, and overtemperature shutdown.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Cooler Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Cooler Click" changes.

Do you want to report abuse regarding "Cooler Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Cooler Click

Cooler Click is a compact add-on board designed as a cooling solution to manage heat in electronic systems efficiently. This board features the DRV8213, a brushless DC motor driver from Texas Instruments, ensuring a high-performance operation. This board also directly integrates a TMP007 temperature sensor and an MF25060V2-1000U-A99 cooling fan onto its platform, offering a compact and ready-to-use cooling system. It operates across a wide PWM frequency range from 0 to 100kHz, supports both 3.3V and 5V logic levels, and features several protection mechanisms, including undervoltage lockout, overcurrent protection, and overtemperature shutdown.

cooler_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Jan 2024.
  • Type : ADC/I2C type

Software Support

We provide a library for the Cooler Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Cooler Click driver.

Standard key functions :

  • cooler_cfg_setup Config Object Initialization function.

    void cooler_cfg_setup ( cooler_cfg_t *cfg );
  • cooler_init Initialization function.

    err_t cooler_init ( cooler_t *ctx, cooler_cfg_t *cfg );
  • cooler_default_cfg Click Default Configuration function.

    err_t cooler_default_cfg ( cooler_t *ctx );

Example key functions :

  • cooler_get_object_temperature This function reads the object's temperature data in degrees Celsius.

    err_t cooler_get_object_temperature ( cooler_t *ctx, float *temperature );
  • cooler_set_out_state This function controls the operation of the cooler - on/off.

    err_t cooler_set_out_state ( cooler_t *ctx, cooler_out_state_t out_state );

Example Description

This example demonstrates the use of the Cooler Click board by reading the target object temperature and controlling the cooler.

The demo application is composed of two sections :

Application Init

The initialization of the I2C module, log UART, and additional pins. After the driver init, the app executes a default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    cooler_cfg_t cooler_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    cooler_cfg_setup( &cooler_cfg );
    COOLER_MAP_MIKROBUS( cooler_cfg, MIKROBUS_1 );
    err_t init_flag = cooler_init( &cooler, &cooler_cfg );
    if ( ( ADC_ERROR == init_flag ) || ( I2C_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( COOLER_ERROR == cooler_default_cfg ( &cooler ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

The demo application measures the temperature of the target object in degrees Celsius and enables a cooler if the temperature exceeds the temperature high limit value. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    float temperature = 0;
    if ( COOLER_OK == cooler_get_object_temperature( &cooler, &temperature ) )
    {
        log_printf( &logger, " Temperature: %.2f degC\r\n", temperature );
        log_printf( &logger, " Cooler: " );
        if ( COOLER_TEMP_HIGH_LIMIT < temperature )
        {
            if ( COOLER_OK == cooler_set_out_state( &cooler, COOLER_ENABLE ) )
            {
                log_printf( &logger, " Enabled.\r\n\n" );
            }
        }
        else
        {
            if ( COOLER_OK == cooler_set_out_state( &cooler, COOLER_DISABLE ) )
            {
                log_printf( &logger, " Disabled.\r\n\n" );
            }
        }
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Cooler

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

SMS Home Alarm 2

5

This is revised SMS Home Alarm System project with new parts and old function - catch the intruder. When motion sensor detects a movement SMS will be sent to predefined number. If movement is still detectable after disarming delay, Siren or any other device can be activated with help of Relay click.

[Learn More]

EERAM 3v3 click

5

Add memory to your project with EERAM 3.3V click. It carries the 47L16/47C16 I2C serial EERAM from Microchip. The click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over I2C interface, with additional functionality provided by the INT pin on the mikroBUSâ„¢ line.

[Learn More]

mikroBootloader

10

To make it as simple as possible to program MCUs on our dev boards, most of them come with a preloaded USB-HID bootloader. While the bootloader firmware is specific to each chip, the PC utility for loading your HEX file to the target microcontroller is universal. It’s done in four steps and takes less than 20 seconds.

[Learn More]