TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141803 times)
  2. FAT32 Library (74940 times)
  3. Network Ethernet Library (59303 times)
  4. USB Device Library (49298 times)
  5. Network WiFi Library (45094 times)
  6. FT800 Library (44656 times)
  7. GSM click (31275 times)
  8. mikroSDK (30205 times)
  9. microSD click (27654 times)
  10. PID Library (27561 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

IPS Display Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: LCD

Downloaded: 122 times

Not followed.

License: MIT license  

IPS Display Click is a compact add-on board that displays high-resolution graphics in embedded applications. This board features the ER-TFT1.14-2, a 1.14inch TFT LCD display from BuyDisplay, part of EastRising Technology, and utilizes the ST7789V controller for 262K color output. The display offers a 135x240 pixel resolution, operates through a 3-wire SPI interface, and includes additional control lines such as RST and RS for precise display management. Its small form factor and high-resolution output make it suitable for various projects, including handheld devices, smart displays, and control panels requiring clear visual output.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "IPS Display Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "IPS Display Click" changes.

Do you want to report abuse regarding "IPS Display Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


IPS Display Click

IPS Display Click is a compact add-on board that displays high-resolution graphics in embedded applications. This board features the ER-TFT1.14-2, a 1.14inch TFT LCD display from BuyDisplay, part of EastRising Technology, and utilizes the ST7789V controller for 262K color output. The display offers a 135x240 pixel resolution, operates through a 3-wire SPI interface, and includes additional control lines such as RST and RS for precise display management. Its small form factor and high-resolution output make it suitable for various projects, including handheld devices, smart displays, and control panels requiring clear visual output.

ipsdisplay_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jan 2024.
  • Type : SPI type

Software Support

We provide a library for the IPS Display Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for IPS Display Click driver.

Standard key functions :

  • ipsdisplay_cfg_setup Config Object Initialization function.

    void ipsdisplay_cfg_setup ( ipsdisplay_cfg_t *cfg );
  • ipsdisplay_init Initialization function.

    err_t ipsdisplay_init ( ipsdisplay_t *ctx, ipsdisplay_cfg_t *cfg );
  • ipsdisplay_default_cfg Click Default Configuration function.

    err_t ipsdisplay_default_cfg ( ipsdisplay_t *ctx );

Example key functions :

  • ipsdisplay_fill_screen This function fills the screen with the selected color.

    err_t ipsdisplay_fill_screen ( ipsdisplay_t *ctx, uint16_t color );
  • ipsdisplay_write_string This function writes a text string starting from the selected position in a 6x12 font size with a specified color.

    err_t ipsdisplay_write_string ( ipsdisplay_t *ctx, ipsdisplay_point_t start_pt, uint8_t *data_in, uint16_t color );
  • ipsdisplay_draw_line This function draws a line with a specified color.

    err_t ipsdisplay_draw_line ( ipsdisplay_t *ctx, ipsdisplay_point_t start_pt, ipsdisplay_point_t end_pt, uint16_t color );

Example Description

This example demonstrates the use of the IPS Display Click board by showing a practical example of using the implemented functions.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ipsdisplay_cfg_t ipsdisplay_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ipsdisplay_cfg_setup( &ipsdisplay_cfg );
    IPSDISPLAY_MAP_MIKROBUS( ipsdisplay_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == ipsdisplay_init( &ipsdisplay, &ipsdisplay_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( IPSDISPLAY_ERROR == ipsdisplay_default_cfg ( &ipsdisplay ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Showcases the text writing example as well as drawing pictures and objects, and filling the whole screen with a desired color. All data is logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    ipsdisplay_point_t start_pt, end_pt;

#if IPSDISPLAY_RESOURCES_INCLUDE_IMG
    log_printf( &logger, " Drawing MIKROE logo example\r\n\n" );
    ipsdisplay_draw_picture ( &ipsdisplay, IPSDISPLAY_ROTATION_HORIZONTAL_180, ipsdisplay_img_mikroe );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif
    log_printf( &logger, " Writing text example\r\n\n" );
    ipsdisplay_fill_screen ( &ipsdisplay, IPSDISPLAY_COLOR_BLACK );
    Delay_ms ( 1000 );
    start_pt.x = 5;
    start_pt.y = 70;
    ipsdisplay_write_string ( &ipsdisplay, start_pt, "      MIKROE      ", IPSDISPLAY_COLOR_RED );
    start_pt.y += 20;
    ipsdisplay_write_string ( &ipsdisplay, start_pt, " IPS display Click", IPSDISPLAY_COLOR_RED );
    start_pt.y += 20;
    ipsdisplay_write_string ( &ipsdisplay, start_pt, "     135x240px    ", IPSDISPLAY_COLOR_RED );
    start_pt.y += 20;
    ipsdisplay_write_string ( &ipsdisplay, start_pt, "ST7789V controller", IPSDISPLAY_COLOR_RED );
    start_pt.y += 20;
    ipsdisplay_write_string ( &ipsdisplay, start_pt, "   TEST EXAMPLE   ", IPSDISPLAY_COLOR_RED );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, " RGB fill screen example\r\n\n" );
    ipsdisplay_fill_screen ( &ipsdisplay, IPSDISPLAY_COLOR_RED );
    Delay_ms ( 1000 );
    ipsdisplay_fill_screen ( &ipsdisplay, IPSDISPLAY_COLOR_LIME );
    Delay_ms ( 1000 );
    ipsdisplay_fill_screen ( &ipsdisplay, IPSDISPLAY_COLOR_BLUE );
    Delay_ms ( 1000 );

    log_printf( &logger, " Drawing objects example\r\n\n" );
    ipsdisplay_fill_screen ( &ipsdisplay, IPSDISPLAY_COLOR_BLACK );
    Delay_ms ( 1000 );
    start_pt.x = IPSDISPLAY_POS_WIDTH_MIN;
    start_pt.y = IPSDISPLAY_POS_HEIGHT_MIN;
    end_pt.x = IPSDISPLAY_POS_WIDTH_MAX;
    end_pt.y = IPSDISPLAY_POS_HEIGHT_MAX;
    ipsdisplay_draw_line ( &ipsdisplay, start_pt, end_pt, IPSDISPLAY_COLOR_BLUE );
    Delay_ms ( 1000 );
    start_pt.x = IPSDISPLAY_POS_WIDTH_MAX;
    start_pt.y = IPSDISPLAY_POS_HEIGHT_MIN;
    end_pt.x = IPSDISPLAY_POS_WIDTH_MIN;
    end_pt.y = IPSDISPLAY_POS_HEIGHT_MAX;
    ipsdisplay_draw_line ( &ipsdisplay, start_pt, end_pt, IPSDISPLAY_COLOR_BLUE );
    Delay_ms ( 1000 );
    start_pt.x = 35;
    start_pt.y = 40;
    end_pt.x = 100;
    end_pt.y = 100;
    ipsdisplay_draw_rectangle ( &ipsdisplay, start_pt, end_pt, IPSDISPLAY_COLOR_CYAN );
    Delay_ms ( 1000 );
    start_pt.y += 100;
    end_pt.y += 100;
    ipsdisplay_draw_rectangle ( &ipsdisplay, start_pt, end_pt, IPSDISPLAY_COLOR_CYAN );
    Delay_ms ( 1000 );
    start_pt.x = 67;
    start_pt.y = 120;
    ipsdisplay_draw_circle ( &ipsdisplay, start_pt, start_pt.x, IPSDISPLAY_COLOR_MAGENTA );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.IPSDisplay

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Expand 12 Click

0

Expand 12 Click is a compact add-on board that contains a multi-port I/O expander. This board features the MAX7300, a general-purpose I/O expander providing remote I/O expansion for most MCU’s families from Maxim Integrated, now part of Analog Devices. The MAX7300 comes in a 28-port configuration and allows easy addition of I/O through a standard I2C serial interface. Each port is user-configurable to either a logic input or logic output, capable of sinking 10mA and sourcing 4.5mA.

[Learn More]

Perfect Envirenment - Demo project

0

Turtle Terrarium is the ideal housing for aquatic turtles and other marine reptiles, amphibians, and invertebrates. This application is using several sensors which show their values on TFT Capacitive Board, refreshed every few seconds.

[Learn More]

Diff Press 2 Click

0

Diff Press 2 Click is a compact add-on board that contains Sensirion’s differential pressure sensor. This board features the SDP31-500PA, a small differential pressure sensor designed for high-volume applications. The SDP31-500PA comes with a configurable host interface that supports I2C serial communication and measures pressure in a range from -500Pa up to +500Pa with an accuracy of 3%. It comes as calibrated and temperature compensated with high reliability/long-term stability, has the best signal-to-noise ratio. It operates in a temperature range of -40°C to 85°C, ensuring stable operation under extreme conditions.

[Learn More]