TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141511 times)
  2. FAT32 Library (74401 times)
  3. Network Ethernet Library (58914 times)
  4. USB Device Library (48940 times)
  5. Network WiFi Library (44715 times)
  6. FT800 Library (44272 times)
  7. GSM click (30997 times)
  8. mikroSDK (29853 times)
  9. PID Library (27432 times)
  10. microSD click (27410 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

1-Wire I2C Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: 1-Wire

Downloaded: 114 times

Not followed.

License: MIT license  

1-Wire I2C Click carries DS28E17 1-Wire-to-I2C master bridge from Analog Devices.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "1-Wire I2C Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "1-Wire I2C Click" changes.

Do you want to report abuse regarding "1-Wire I2C Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


1-Wire I2C Click

1-Wire I2C Click carries DS28E17 1-Wire-to-I2C master bridge from Analog Devices.

1wirei2c_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2024.
  • Type : One Wire type

Software Support

We provide a library for the 1-Wire I2C Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for 1-Wire I2C Click driver.

Standard key functions :

  • c1wirei2c_cfg_setup Config Object Initialization function.

    void c1wirei2c_cfg_setup ( c1wirei2c_cfg_t *cfg );
  • c1wirei2c_init Initialization function.

    err_t c1wirei2c_init ( c1wirei2c_t *ctx, c1wirei2c_cfg_t *cfg );
  • c1wirei2c_default_cfg Click Default Configuration function.

    err_t c1wirei2c_default_cfg ( c1wirei2c_t *ctx );

Example key functions :

  • c1wirei2c_reset_device This function resets the device by toggling the RST pin state.

    void c1wirei2c_reset_device ( c1wirei2c_t *ctx );
  • c1wirei2c_write_data This function addresses and writes 1-255 bytes to an I2C slave without completing the transaction with a stop.

    err_t c1wirei2c_write_data ( c1wirei2c_t *ctx, uint8_t slave_addr, uint8_t *data_in, uint8_t len );
  • c1wirei2c_read_data_stop This function is used to address and read 1-255 bytes from an I2C slave in one transaction.

    err_t c1wirei2c_read_data_stop ( c1wirei2c_t *ctx, uint8_t slave_addr, uint8_t *data_out, uint8_t len );

Example Description

This example demonstrates the use of 1-Wire I2C Click board by reading the temperature measurement from connected Thermo 4 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    c1wirei2c_cfg_t c1wirei2c_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    c1wirei2c_cfg_setup( &c1wirei2c_cfg );
    C1WIREI2C_MAP_MIKROBUS( c1wirei2c_cfg, MIKROBUS_1 );
    if ( ONE_WIRE_ERROR == c1wirei2c_init( &c1wirei2c, &c1wirei2c_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( C1WIREI2C_ERROR == c1wirei2c_default_cfg ( &c1wirei2c ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the temperature measurement from connected Thermo 4 Click board and displays the results on the USB UART once per second.

void application_task ( void )
{
    float temperature = 0;
    uint8_t reg_data[ 2 ] = { 0 };
    uint8_t reg_addr = DEVICE_REG_TEMPERATURE;
    if ( ( C1WIREI2C_OK == c1wirei2c_write_data ( &c1wirei2c, DEVICE_SLAVE_ADDRESS, &reg_addr, 1 ) ) && 
         ( C1WIREI2C_OK == c1wirei2c_read_data_stop ( &c1wirei2c, DEVICE_SLAVE_ADDRESS, reg_data, 2 ) ) )
    {
        temperature = ( ( ( int16_t ) ( ( ( uint16_t ) reg_data[ 0 ] << 8 ) | 
                                                       reg_data[ 1 ] ) ) >> 5 ) * DEVICE_TEMPERATURE_RES;
        log_printf( &logger, "\r\n%s - Temperature: %.3f degC\r\n", ( char * ) DEVICE_NAME, temperature );
    }
    else
    {
        log_error( &logger, "%s - no communication!\r\n", ( char * ) DEVICE_NAME );
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.1WireI2C

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

UVB Click

0

UVB Click is ultraviolet sensing board based on GUVB-C31SM sensor from GenUV, capable of measuring UV index between 0 to 16. UVB Click supports integrated functions of ultraviolet light sensors such that can be easily configured and used in user applications. Overexposure to UVB radiation not only can cause sunburn but also some forms of skin cancer, so knowing amount of UVB light can be quite important and this Click board™ is perfect solution for that task.

[Learn More]

NTAG 5 Link Click

0

NTAG 5 Link Click is a compact add-on board that acts as a bridge between an NFC-enabled device and any I2C slave, such as a sensor or external memory. This board features the NTA5332, a highly integrated NFC IC which creates a secure standard-based link from the device to the cloud from NXP Semiconductors. Based on the NTAG 5 switch and operating at 13.56MHz, the NTA5332 represents an NFC Forum-compliant contactless tag that can be read and written by an NFC-enabled device at close range and by an ISO/IEC 15693-enabled industrial reader over a more extended range. It also incorporates an I2C interface with an I2C master features and AES mutual authentication, SRAM memory, and energy harvesting possibility, which means it can supply power to other components in the system.

[Learn More]

Serializer Click

0

Serializer Click is a compact add-on board that contains a digital input translator/serializer. This board features the MAX31910, an eight-channel digital input serializer for high-channel density digital input modules in industrial and process automation from Analog Devices. The MAX31910 translates, conditions, and serializes the 24V digital output of sensors and switches to 5V CMOS-compatible signals required by the MCU. It provides the front-end interface circuit of a programmable logic controller (PLC) digital input module. It communicates with MCU via the SPI interface and comes in configuration with an installed digital isolator. This Click board™ is suited for various applications such as industrial, process, and building automation, digital input modules for PLCs, and more.

[Learn More]