TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (396 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (127 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140715 times)
  2. FAT32 Library (73182 times)
  3. Network Ethernet Library (58132 times)
  4. USB Device Library (48290 times)
  5. Network WiFi Library (43926 times)
  6. FT800 Library (43414 times)
  7. GSM click (30418 times)
  8. mikroSDK (29118 times)
  9. PID Library (27132 times)
  10. microSD click (26776 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LR 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.2

mikroSDK Library: 2.0.0.0

Category: LoRa

Downloaded: 42 times

Not followed.

License: MIT license  

LR 6 Click is a compact add-on board designed for ultra-long-distance spread-spectrum communication. This board features the Ra-01S, a LoRa™ wireless radio frequency module from Ai-Thinker Technology, featuring the SX1268 radio chip. This module provides exceptional sensitivity of over -148dBm, a power output of +22dBm, and supports multiple modulation methods, including LoRa™, within the 433MHz frequency band. The board offers robust anti-interference capabilities and low power consumption, making it ideal for applications requiring reliable long-range communication.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LR 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LR 6 Click" changes.

Do you want to report abuse regarding "LR 6 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LR 6 Click

LR 6 Click is a compact add-on board designed for ultra-long-distance spread-spectrum communication. This board features the Ra-01S, a LoRa™ wireless radio frequency module from Ai-Thinker Technology, featuring the SX1268 radio chip. This module provides exceptional sensitivity of over -148dBm, a power output of +22dBm, and supports multiple modulation methods, including LoRa™, within the 433MHz frequency band. The board offers robust anti-interference capabilities and low power consumption, making it ideal for applications requiring reliable long-range communication.

lr6_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Mar 2024.
  • Type : SPI type

Software Support

We provide a library for the LR 6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LR 6 Click driver.

Standard key functions :

  • lr6_cfg_setup Config Object Initialization function.

    void lr6_cfg_setup ( lr6_cfg_t *cfg );
  • lr6_init Initialization function.

    err_t lr6_init ( lr6_t *ctx, lr6_cfg_t *cfg );
  • lr6_default_cfg Click Default Configuration function.

    err_t lr6_default_cfg ( lr6_t *ctx );

Example key functions :

  • lr6_send_data This function sends a desired number of data bytes to the buffer by using the selected mode using the SPI serial interface.

    err_t lr6_send_data ( lr6_t *ctx, uint8_t *send_data, uint8_t len, uint8_t mode );
  • lr6_receive_data This function receives a desired number of data bytes to the buffer by using the SPI serial interface.

    err_t lr6_receive_data ( lr6_t *ctx, uint8_t *receive_data, uint16_t buff_len, uint8_t *rx_len );
  • lr6_set_lr_config This function performs the desired LoRa configuration by using the SPI serial interface.

    err_t lr6_set_lr_config ( lr6_t *ctx, lr6_lora_cfg_t lora_cfg );

Example Description

This example demonstrates the use of LR 6 Click board by processing the incoming data and displaying them on the USB UART.

The demo application is composed of two sections :

Application Init

Initialization of SPI module and log UART. After driver initialization, the app executes a default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    lr6_cfg_t lr6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    lr6_cfg_setup( &lr6_cfg );
    LR6_MAP_MIKROBUS( lr6_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == lr6_init( &lr6, &lr6_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( LR6_ERROR == lr6_default_cfg ( &lr6 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, " --------------------\r\n" );
}

Application Task

The demo application is an echo example that sends a demo LoRa packet string and receives and processes all incoming data. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
    uint8_t rx_data[ 255 ] = { 0 };
    if ( LR6_OK == lr6_send_data( &lr6, LR6_DEMO_TEXT, strlen( LR6_DEMO_TEXT ), LR6_TX_MODE_SYNC ) ) 
    {
        log_info( &logger, " Send - success" );
        uint8_t rx_len = 0;
        do 
        {
            if ( LR6_OK == lr6_receive_data( &lr6, rx_data, strlen( LR6_DEMO_TEXT ), &rx_len ) )
            {
                if ( rx_len > 0 )
                { 
                    log_info( &logger, " Receive - success" );
                    log_printf( &logger, " > Receive: " );
                    for ( uint8_t cnt = 0; cnt < strlen( LR6_DEMO_TEXT ); cnt++ )
                    {
                        log_printf( &logger, "%c", rx_data[ cnt ] );
                    }

                    int8_t rssi, snr;
                    if ( LR6_OK == lr6_get_packet_status( &lr6, &rssi, &snr ) )
                    {
                        log_printf( &logger, " Rssi Pkt: %d dBm\r\n", ( int16_t ) rssi );
                        log_printf( &logger, " Snr Pkt : %d dB\r\n", ( int16_t ) snr );
                        log_printf( &logger, " --------------------\r\n" );
                        break;
                    }
                }
            }
        } 
        while ( rx_len == 0 );
    }
    else
    {
        log_info( &logger, "Send - fail" );
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LR6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LED Flash 2 click

5

LED Flash 2 click is a powerful flash or torch click, featuring the MIC2870, a high-efficiency flash LED driver, optimized for driving one or two high-brightness camera flash LEDs. The MIC2870 IC can drive one high brightness LED up to 1.5A or two high brightness LEDs, up to 750mA each.

[Learn More]

Led Driver 5 Click

0

The application is a capable of driving an array of high-power LEDs.

[Learn More]

Stepper 21 Click

0

Stepper 21 Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the DRV8825, a stepper motor controller integral circuit from Texas Instruments. It is a PWM micro-stepping stepper motor driver with up to 1/32 micro-stepping resolution and a built-in micro-stepper indexer. The driver has two H-bridge drivers and is intended to drive a bipolar stepper motor in a voltage supply operating range of 8.2V up to 45V.

[Learn More]