TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141340 times)
  2. FAT32 Library (74184 times)
  3. Network Ethernet Library (58762 times)
  4. USB Device Library (48851 times)
  5. Network WiFi Library (44561 times)
  6. FT800 Library (44146 times)
  7. GSM click (30881 times)
  8. mikroSDK (29724 times)
  9. PID Library (27368 times)
  10. microSD click (27307 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

STSPIN220 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 90 times

Not followed.

License: MIT license  

STSPIN220 Click is a stepper motor driver with the PWM current control and selectable microstepping up to 256 microsteps. It is based on the STSPIN220, a low voltage stepper motor driver from STSPIN2 series. It is optimized for battery-powered, low voltage motor driving applications, featuring the lowest standby current available on the market (max 80 nA). The STSPIN220 is a high-efficiency motor driver, featuring low ON resistance MOSFETs as the output stage, in a small 3x3mm QFN package. Its output stage implements the PWM current control with fixed OFF time, along with a full set of protection features. The device can be used with the step motor voltage ranging from 1.8V to 10V, and current up to 1.3A per bridge.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "STSPIN220 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "STSPIN220 Click" changes.

Do you want to report abuse regarding "STSPIN220 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


STSPIN220 Click

STSPIN220 Click is a stepper motor driver with the PWM current control and selectable microstepping up to 256 microsteps. It is based on the STSPIN220, a low voltage stepper motor driver from STSPIN2 series. It is optimized for battery-powered, low voltage motor driving applications, featuring the lowest standby current available on the market (max 80 nA). The STSPIN220 is a high-efficiency motor driver, featuring low ON resistance MOSFETs as the output stage, in a small 3x3mm QFN package. Its output stage implements the PWM current control with fixed OFF time, along with a full set of protection features. The device can be used with the step motor voltage ranging from 1.8V to 10V, and current up to 1.3A per bridge.

stspin220_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2024.
  • Type : GPIO type

Software Support

We provide a library for the STSPIN220 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for STSPIN220 Click driver.

Standard key functions :

  • stspin220_cfg_setup Config Object Initialization function.

    void stspin220_cfg_setup ( stspin220_cfg_t *cfg );
  • stspin220_init Initialization function.

    err_t stspin220_init ( stspin220_t *ctx, stspin220_cfg_t *cfg );
  • stspin220_default_cfg Click Default Configuration function.

    void stspin220_default_cfg ( stspin220_t *ctx );

Example key functions :

  • stspin220_set_direction This function sets the motor direction by setting the DIR pin logic state.

    void stspin220_set_direction ( stspin220_t *ctx, uint8_t dir );
  • stspin220_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    void stspin220_drive_motor ( stspin220_t *ctx, uint32_t steps, uint8_t speed );
  • stspin220_reset_device This function resets the device by toggling the RST pin.

    void stspin220_reset_device ( stspin220_t *ctx );

Example Description

This example demonstrates the use of the STSPIN220 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stspin220_cfg_t stspin220_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stspin220_cfg_setup( &stspin220_cfg );
    STSPIN220_MAP_MIKROBUS( stspin220_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == stspin220_init( &stspin220, &stspin220_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    stspin220_default_cfg ( &stspin220 );

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 steps and then counter-clockwise with a 2 seconds delay delay on driving mode change. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 steps clockwise, speed: slow\r\n\n" );
    stspin220_set_direction ( &stspin220, STSPIN220_DIR_CW );
    stspin220_drive_motor ( &stspin220, 200, STSPIN220_SPEED_SLOW );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 200 steps counter-clockwise, speed: fast\r\n\n" );
    stspin220_set_direction ( &stspin220, STSPIN220_DIR_CCW );
    stspin220_drive_motor ( &stspin220, 200, STSPIN220_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.STSPIN220

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

RTC 9 click

5

RTC 9 Click is a real-time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time. This board features the M41T82, real-time clock (RTC) with battery switchover, from ST Microelectronics.

[Learn More]

ROTARY O Click

0

Rotary Click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 orange LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU. The LED ring is controlled through SPI lines (CS, SCK, MISO, MOSI). Rotary Click can be used with either a 3.3V or 5V power supply.

[Learn More]

6DOF IMU 12 click

5

6DOF IMU 12 carries the ultra-low-power BMI270, Inertial Measurement Unit optimized for wearables providing precise acceleration, angular rate measurement and intelligent on-chip motion-triggered interrupt features.

[Learn More]