We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.2
mikroSDK Library: 2.0.0.0
Category: Proximity
Downloaded: 33 times
Not followed.
License: MIT license
Proximity 20 Click is a compact add-on board for short-range proximity sensing applications up to 200mm. This board features two VCNL36828P proximity sensors from Vishay Semiconductor. Key features include a 940nm VCSEL for immunity to a red glow, intelligent cancellation technology to minimize crosstalk, and a smart persistence scheme for reduced measurement response time.
Do you want to subscribe in order to receive notifications regarding "Proximity 20 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Proximity 20 Click" changes.
Do you want to report abuse regarding "Proximity 20 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5705_proximity_20_cli.zip [502.89KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Proximity 20 Click is a compact add-on board for short-range proximity sensing applications up to 200mm. This board features two VCNL36828P proximity sensors from Vishay Semiconductor. Key features include a 940nm VCSEL for immunity to a red glow, intelligent cancellation technology to minimize crosstalk, and a smart persistence scheme for reduced measurement response time.
We provide a library for the Proximity 20 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for Proximity 20 Click driver.
proximity20_cfg_setup
Config Object Initialization function.
void proximity20_cfg_setup ( proximity20_cfg_t *cfg );
proximity20_init
Initialization function.
err_t proximity20_init ( proximity20_t *ctx, proximity20_cfg_t *cfg );
proximity20_default_cfg
Click Default Configuration function.
err_t proximity20_default_cfg ( proximity20_t *ctx );
proximity20_read_proximity
This function reads the proximity data from U2 and U3 sensors.
err_t proximity20_read_proximity ( proximity20_t *ctx, uint16_t *ps_data_u2, uint16_t *ps_data_u3 );
proximity20_set_device_address
This function sets the device slave address.
err_t proximity20_set_device_address ( proximity20_t *ctx, uint8_t dev_addr );
proximity20_enable_device
This function enables the device by setting the EN pin to high logic state.
void proximity20_enable_device ( proximity20_t *ctx );
This example demonstrates the use of Proximity 20 Click board by reading and displaying the proximity data on the USB UART.
The demo application is composed of two sections :
Initializes the driver and logger, and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
proximity20_cfg_t proximity20_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
proximity20_cfg_setup( &proximity20_cfg );
PROXIMITY20_MAP_MIKROBUS( proximity20_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == proximity20_init( &proximity20, &proximity20_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( PROXIMITY20_ERROR == proximity20_default_cfg ( &proximity20 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Reads the proximity data from 2 sensors and displays the results on the USB UART every 200ms. The higher the proximity value, the closer the detected object.
void application_task ( void )
{
uint16_t ps_data_u2 = 0;
uint16_t ps_data_u3 = 0;
if ( PROXIMITY20_OK == proximity20_read_proximity ( &proximity20, &ps_data_u2, &ps_data_u3 ) )
{
log_printf ( &logger, " PS data [U2]: %u\r\n", ps_data_u2 );
log_printf ( &logger, " PS data [U3]: %u\r\n\n", ps_data_u3 );
Delay_ms ( 200 );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.