TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (129 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140792 times)
  2. FAT32 Library (73411 times)
  3. Network Ethernet Library (58206 times)
  4. USB Device Library (48390 times)
  5. Network WiFi Library (44011 times)
  6. FT800 Library (43559 times)
  7. GSM click (30474 times)
  8. mikroSDK (29185 times)
  9. PID Library (27174 times)
  10. microSD click (26850 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Stepper 23 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.3

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 61 times

Not followed.

License: MIT license  

Stepper 23 Click is a compact add-on board designed to drive small stepping motors in consumer electronics and industrial equipment applications. This board features the TB67S569FTG, a BiCD constant-current 2-phase bipolar stepping motor driver IC from Toshiba Semiconductor. Key features include a PWM chopper-type 2-phase bipolar drive system, high withstand voltage of up to 34V operating, and a maximum operating current of 1.8A per phase. The board also integrates safety mechanisms such as over-temperature, over-current, and low-supply voltage detection. Additional control is provided by the PCA9555A port expander via I2C, enabling functions like decay and torque modes, step resolution settings, and many more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Stepper 23 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Stepper 23 Click" changes.

Do you want to report abuse regarding "Stepper 23 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Stepper 23 Click

Stepper 23 Click is a compact add-on board designed to drive small stepping motors in consumer electronics and industrial equipment applications. This board features the TB67S569FTG, a BiCD constant-current 2-phase bipolar stepping motor driver IC from Toshiba Semiconductor. Key features include a PWM chopper-type 2-phase bipolar drive system, high withstand voltage of up to 34V operating, and a maximum operating current of 1.8A per phase. The board also integrates safety mechanisms such as over-temperature, over-current, and low-supply voltage detection. Additional control is provided by the PCA9555A port expander via I2C, enabling functions like decay and torque modes, step resolution settings, and many more.

stepper23_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2024.
  • Type : I2C type

Software Support

We provide a library for the Stepper 23 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Stepper 23 Click driver.

Standard key functions :

  • stepper23_cfg_setup Config Object Initialization function.

    void stepper23_cfg_setup ( stepper23_cfg_t *cfg );
  • stepper23_init Initialization function.

    err_t stepper23_init ( stepper23_t *ctx, stepper23_cfg_t *cfg );
  • stepper23_default_cfg Click Default Configuration function.

    err_t stepper23_default_cfg ( stepper23_t *ctx );

Example key functions :

  • stepper23_set_direction This function sets the motor direction by setting the DIR pin logic state.

    void stepper23_set_direction ( stepper23_t *ctx, uint8_t dir );
  • stepper23_set_step_mode This function sets the step mode resolution settings.

    err_t stepper23_set_step_mode ( stepper23_t *ctx, uint8_t mode );
  • stepper23_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    void stepper23_drive_motor ( stepper23_t *ctx, uint32_t steps, uint8_t speed );

Example Description

This example demonstrates the use of the Stepper 23 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper23_cfg_t stepper23_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper23_cfg_setup( &stepper23_cfg );
    STEPPER23_MAP_MIKROBUS( stepper23_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == stepper23_init( &stepper23, &stepper23_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( STEPPER23_ERROR == stepper23_default_cfg ( &stepper23 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 full steps and then counter-clockiwse for 200 half steps and 400 quarter steps with a 1 second delay on driving mode change. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 full steps clockwise, speed: slow\r\n\n" );
    stepper23_set_direction ( &stepper23, STEPPER23_DIR_CW );
    stepper23_set_step_mode ( &stepper23, STEPPER23_MODE_FULL_STEP );
    stepper23_drive_motor ( &stepper23, 200, STEPPER23_SPEED_SLOW );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 200 half steps counter-clockwise, speed: medium\r\n\n" );
    stepper23_set_direction ( &stepper23, STEPPER23_DIR_CCW );
    stepper23_set_step_mode ( &stepper23, STEPPER23_MODE_HALF_STEP_TYPE_A );
    stepper23_drive_motor ( &stepper23, 200, STEPPER23_SPEED_MEDIUM );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 400 quarter steps counter-clockwise, speed: fast\r\n\n" );
    stepper23_set_direction ( &stepper23, STEPPER23_DIR_CCW );
    stepper23_set_step_mode ( &stepper23, STEPPER23_MODE_QUARTER_STEP );
    stepper23_drive_motor ( &stepper23, 400, STEPPER23_SPEED_FAST );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Stepper23

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Hall Switch 2 Click

0

Hall Switch 2 Click is a compact add-on board that represents a magnetic field-activated dual-relay Click board™. This board features the MHA100KN, a high-performance, low-power Hall-Effect sensor from MEMSIC.

[Learn More]

Clock Gen 6 Click

0

Clock Gen 6 Click is a compact add-on board representing a digital oscillator solution. This board features the MIC1557, an IttyBitty CMOS RC oscillator designed to provide rail-to-rail pulses for precise time delay or frequency generation from Microchip Technology. The MIC1557 has a single threshold and trigger connection, internally connected, for astable (oscillator) operation only. It also has an enable/reset control signal routed to the RST pin of the mikroBUS™ socket, which controls the bias supply to the oscillator’s internal circuitry and optimizes power consumption used for oscillator power ON/OFF purposes. In addition, it provides the ability to select the desired frequency programmed via a digital potentiometer, the MAX5401.

[Learn More]

Wifi CC3000 Camera Client

1

This code shows how to use the Net_Wireless_CC3000 library to connect to camera server, and download image.

[Learn More]