TOP Contributors

  1. MIKROE (2754 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139122 times)
  2. FAT32 Library (71627 times)
  3. Network Ethernet Library (57013 times)
  4. USB Device Library (47367 times)
  5. Network WiFi Library (43028 times)
  6. FT800 Library (42320 times)
  7. GSM click (29793 times)
  8. mikroSDK (27918 times)
  9. PID Library (26862 times)
  10. microSD click (26155 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LTE Cat.4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.2

mikroSDK Library: 2.0.0.0

Category: GSM/LTE

Downloaded: 23 times

Not followed.

License: MIT license  

LTE Cat.4 Click (for Europe) is a compact add-on board made specially for 4G M2M and IoT applications in Europe. This board features the EG95EXGA-128-SGNS, an IoT/M2M-optimized LTE Cat.4 module that meets the 3GPP Release 11 standard from Quectel. It supports multiple wireless standards, including LTE-FDD, WCDMA, and GSM, ensuring broad network compatibility. Key features include multi-band LTE support (B1/B3/B7/B8/B20/B28), RX diversity for bands B1 and B8, and multi-constellation GNSS (GPS, GLONASS, BeiDou/Compass, Galileo, QZSS). It also integrates a 16-bit mono audio codec for voice functionality with support for CTIA standard headphones. Additionally, it offers a USB Type C connector for power and data transfer, AT command communication, and firmware upgrades.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LTE Cat.4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LTE Cat.4 Click" changes.

Do you want to report abuse regarding "LTE Cat.4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LTE Cat.4 Click

LTE Cat.4 Click (for Europe) is a compact add-on board made specially for 4G M2M and IoT applications in Europe. This board features the EG95EXGA-128-SGNS, an IoT/M2M-optimized LTE Cat.4 module that meets the 3GPP Release 11 standard from Quectel. It supports multiple wireless standards, including LTE-FDD, WCDMA, and GSM, ensuring broad network compatibility. Key features include multi-band LTE support (B1/B3/B7/B8/B20/B28), RX diversity for bands B1 and B8, and multi-constellation GNSS (GPS, GLONASS, BeiDou/Compass, Galileo, QZSS). It also integrates a 16-bit mono audio codec for voice functionality with support for CTIA standard headphones. Additionally, it offers a USB Type C connector for power and data transfer, AT command communication, and firmware upgrades.

ltecat4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2024.
  • Type : UART type

Software Support

We provide a library for the LTE Cat.4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LTE Cat.4 Click driver.

Standard key functions :

  • ltecat4_cfg_setup Config Object Initialization function.

    void ltecat4_cfg_setup ( ltecat4_cfg_t *cfg );
  • ltecat4_init Initialization function.

    err_t ltecat4_init ( ltecat4_t *ctx, ltecat4_cfg_t *cfg );

Example key functions :

  • ltecat4_set_sim_apn This function sets APN for sim card.

    void ltecat4_set_sim_apn ( ltecat4_t *ctx, uint8_t *sim_apn );
  • ltecat4_send_sms_text This function sends text message to a phone number.

    void ltecat4_send_sms_text ( ltecat4_t *ctx, uint8_t *phone_number, uint8_t *sms_text );
  • ltecat4_send_cmd This function sends a specified command to the Click module.

    void ltecat4_send_cmd ( ltecat4_t *ctx, uint8_t *cmd );

Example Description

Application example shows device capability of connecting to the network and sending SMS or TCP/UDP messages, answering incoming calls, or retrieving data from GNSS using standard "AT" commands.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ltecat4_cfg_t ltecat4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ltecat4_cfg_setup( &ltecat4_cfg );
    LTECAT4_MAP_MIKROBUS( ltecat4_cfg, MIKROBUS_1 );
    if ( UART_ERROR == ltecat4_init( &ltecat4, &ltecat4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );

    app_state = LTECAT4_POWER_UP;
    log_printf( &logger, ">>> APP STATE - POWER UP <<<\r\n\n" );
}

Application Task

Application task is split in few stages:

  • LTECAT4_POWER_UP: Powers up the device, performs a factory reset and reads system information.
  • LTECAT4_CONFIG_CONNECTION: Sets configuration to device to be able to connect to the network (used only for SMS, CALL, or TCP/UDP demo examples).
  • LTECAT4_CHECK_CONNECTION: Waits for the network registration indicated via CREG command and then checks the signal quality report (used only for SMS, CALL, or TCP/UDP demo examples).
  • LTECAT4_CONFIG_EXAMPLE: Configures device for the selected example.
  • LTECAT4_EXAMPLE: Depending on the selected demo example, it sends an SMS message (in PDU or TXT mode) or TCP/UDP message, waits for incoming calls and answers it, or waits for the GPS fix to retrieve location info from GNSS. By default, the TCP/UDP example is selected.
void application_task ( void )
{
    switch ( app_state )
    {
        case LTECAT4_POWER_UP:
        {
            if ( LTECAT4_OK == ltecat4_power_up( &ltecat4 ) )
            {
                app_state = LTECAT4_CONFIG_CONNECTION;
                log_printf( &logger, ">>> APP STATE - CONFIG CONNECTION <<<\r\n\n" );
            }
            break;
        }
        case LTECAT4_CONFIG_CONNECTION:
        {
            if ( LTECAT4_OK == ltecat4_config_connection( &ltecat4 ) )
            {
                app_state = LTECAT4_CHECK_CONNECTION;
                log_printf( &logger, ">>> APP STATE - CHECK CONNECTION <<<\r\n\n" );
            }
            break;
        }
        case LTECAT4_CHECK_CONNECTION:
        {
            if ( LTECAT4_OK == ltecat4_check_connection( &ltecat4 ) )
            {
                app_state = LTECAT4_CONFIG_EXAMPLE;
                log_printf( &logger, ">>> APP STATE - CONFIG EXAMPLE <<<\r\n\n" );
            }
            break;
        }
        case LTECAT4_CONFIG_EXAMPLE:
        {
            if ( LTECAT4_OK == ltecat4_config_example( &ltecat4 ) )
            {
                app_state = LTECAT4_EXAMPLE;
                log_printf( &logger, ">>> APP STATE - EXAMPLE <<<\r\n\n" );
            }
            break;
        }
        case LTECAT4_EXAMPLE:
        {
            ltecat4_example( &ltecat4 );
            break;
        }
        default:
        {
            log_error( &logger, " APP STATE." );
            break;
        }
    }
}

Note

In order for the examples to work (except GNSS example), user needs to set the APN and SMSC (SMS PDU mode only) of entered SIM card as well as the phone number (SMS mode only) to which he wants to send an SMS. Enter valid values for the following macros: SIM_APN, SIM_SMSC and PHONE_NUMBER.

Example:

  • SIM_APN "internet"
  • SIM_SMSC "+381610401"
  • PHONE_NUMBER "+381659999999"

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LTECat4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

GNSS RTK 2 Click

0

GNSS RTK 2 Click is a compact add-on board used to enhance the precision of position data derived from satellite-based positioning systems. This board features the ZED-F9R, a multi-band professional-grade GNSS module with integrated multi-band Real Time Kinematics (RTK) technology offering centimeter-level accuracy from u-blox. This module concurrently uses GNSS signals from all four GNSS constellations (GPS/QZSS, GLONASS, Galileo, and BeiDou) and provides a reliable multi-band RTK turnkey solution with up to 30Hz real-time position update rate and full GNSS carrier raw data.

[Learn More]

Charger 26 Click

0

Charger 26 Click is a compact add-on board that provides a single-cell charging solution. This board features the MAX1811, a USB-powered Li+ charger from Analog Devices. The charger uses an internal FET to deliver the battery up to 500mA charging current. It has pre-conditioning that soft-starts a near-dead battery cell before charging.

[Learn More]

Brushless 9 Click

0

Brushless 9 Click is a compact add-on board suitable for controlling BLDC motors with any MCU. This board features the TC78B027FTG, a 1-Hall sine-wave PWM controller for three-phase brushless DC motors from Toshiba Semiconductor. It simplifies the motor selection by using only one Hall sensor input that can be used with either a single Hall sensor motor or the more conventional 3 Hall sensor motors.

[Learn More]