TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72621 times)
  3. Network Ethernet Library (57641 times)
  4. USB Device Library (47955 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28669 times)
  9. PID Library (27056 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BarGraph 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.2

mikroSDK Library: 2.0.0.0

Category: LED segment

Downloaded: 35 times

Not followed.

License: MIT license  

BarGraph 5 Click is a compact add-on board designed for visual data representation through LED bargraph displays. This board features three HLMP-2685 red LED bargraph displays from Broadcom Limited, controlled by the TLC5947, a 12-bit PWM LED driver from Texas Instruments. These rectangular red light bars are housed in single-in-line packages, delivering a luminous intensity of 83.4mcd with a peak wavelength of 626nm.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BarGraph 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BarGraph 5 Click" changes.

Do you want to report abuse regarding "BarGraph 5 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


BarGraph 5 Click

BarGraph 5 Click is a compact add-on board designed for visual data representation through LED bargraph displays. This board features three HLMP-2685 red LED bargraph displays from Broadcom Limited, controlled by the TLC5947, a 12-bit PWM LED driver from Texas Instruments. These rectangular red light bars are housed in single-in-line packages, delivering a luminous intensity of 83.4mcd with a peak wavelength of 626nm.

bargraph5_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2024.
  • Type : SPI type

Software Support

We provide a library for the BarGraph 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for BarGraph 5 Click driver.

Standard key functions :

  • bargraph5_cfg_setup Config Object Initialization function.

    void bargraph5_cfg_setup ( bargraph5_cfg_t *cfg );
  • bargraph5_init Initialization function.

    err_t bargraph5_init ( bargraph5_t *ctx, bargraph5_cfg_t *cfg );
  • bargraph5_default_cfg Click Default Configuration function.

    err_t bargraph5_default_cfg ( bargraph5_t *ctx );

Example key functions :

  • bargraph5_set_bar_level This function sets the level of a selected BarGraph channel at the selected brightness.

    err_t bargraph5_set_bar_level ( bargraph5_t *ctx, bargraph5_bar_sel_t bar_num, bargraph5_level_t level, uint16_t brightness );
  • bargraph5_output_enable This function enables the BarGraph LEDs output by setting the BLANK pin to low logic state.

    void bargraph5_output_enable ( bargraph5_t *ctx );
  • bargraph5_output_disable This function disables the BarGraph LEDs output by setting the BLANK pin to high logic state.

    void bargraph5_output_disable ( bargraph5_t *ctx );

Example Description

This example demonstrates the use of BarGraph 5 Click board by changing the level of all BarGraph output channels.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    bargraph5_cfg_t bargraph5_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    bargraph5_cfg_setup( &bargraph5_cfg );
    BARGRAPH5_MAP_MIKROBUS( bargraph5_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == bargraph5_init( &bargraph5, &bargraph5_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BARGRAPH5_ERROR == bargraph5_default_cfg ( &bargraph5 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Changes the level of all BarGraph channels once per second. The channels level is displayed on the USB UART.

void application_task ( void )
{
    for ( bargraph5_level_t cnt = BARGRAPH5_LEVEL_0; cnt <= BARGRAPH5_LEVEL_4; cnt++ )
    {
        bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_0, cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
        bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_1, BARGRAPH5_LEVEL_4 - cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
        bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_2, cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
        bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_3, BARGRAPH5_LEVEL_4 - cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
        bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_4, cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
        bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_5, BARGRAPH5_LEVEL_4 - cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
        log_printf( &logger, " Bars 0-2-4 level: %u\r\n", ( uint16_t ) cnt );
        log_printf( &logger, " Bars 1-3-5 level: %u\r\n\n", ( uint16_t ) ( BARGRAPH5_LEVEL_4 - cnt ) );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BarGraph5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

6DOF IMU 2 click

3

6DOF IMU 2 click is a mikroBUS add-on board with Bosch's BMI160 low power inertial measurement unit (IMU). The BMI160 is capable of precise acceleration and angular rate (gyroscopic) measurement. 6DOF IMU 2 click communicates with the target MCU through the I2C or SPI bus (user-selectable).

[Learn More]

7x10 G Click

0

7x10 G Click is a LED dot matrix display Click, which can be used to display graphics or letters in a very simple and easy way. The Click board has two LED dot matrix modules with 7x5 stylish, round, dot-like LED elements. These displays produce clean and uniform patterns since the elements are optically isolated from each other and there is no light bleeding between the adjacent LED cells. Additionally, turn-on and turn-off times of the matrix cells are optimized for a clean and fluid display performance, with no flickering or lag.

[Learn More]

SPIRIT Click

0

SPIRIT Click carries the SP1ML 868MHz ultra low-power RF module. The board is designed to use 3.3V power supply and 3.3V or 5V I/O voltage levels. It communicates with the target MCU over UART interface, with additional functionality provided by the following pins on the mikroBUS™ line: PWM, RST, CS.

[Learn More]