We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.2
mikroSDK Library: 2.0.0.0
Category: LED segment
Downloaded: 8 times
Not followed.
License: MIT license
BarGraph 5 Click is a compact add-on board designed for visual data representation through LED bargraph displays. This board features three HLMP-2685 red LED bargraph displays from Broadcom Limited, controlled by the TLC5947, a 12-bit PWM LED driver from Texas Instruments. These rectangular red light bars are housed in single-in-line packages, delivering a luminous intensity of 83.4mcd with a peak wavelength of 626nm.
Do you want to subscribe in order to receive notifications regarding "BarGraph 5 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "BarGraph 5 Click" changes.
Do you want to report abuse regarding "BarGraph 5 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5734_bargraph_5_click.zip [524.34KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
BarGraph 5 Click is a compact add-on board designed for visual data representation through LED bargraph displays. This board features three HLMP-2685 red LED bargraph displays from Broadcom Limited, controlled by the TLC5947, a 12-bit PWM LED driver from Texas Instruments. These rectangular red light bars are housed in single-in-line packages, delivering a luminous intensity of 83.4mcd with a peak wavelength of 626nm.
We provide a library for the BarGraph 5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for BarGraph 5 Click driver.
bargraph5_cfg_setup
Config Object Initialization function.
void bargraph5_cfg_setup ( bargraph5_cfg_t *cfg );
bargraph5_init
Initialization function.
err_t bargraph5_init ( bargraph5_t *ctx, bargraph5_cfg_t *cfg );
bargraph5_default_cfg
Click Default Configuration function.
err_t bargraph5_default_cfg ( bargraph5_t *ctx );
bargraph5_set_bar_level
This function sets the level of a selected BarGraph channel at the selected brightness.
err_t bargraph5_set_bar_level ( bargraph5_t *ctx, bargraph5_bar_sel_t bar_num, bargraph5_level_t level, uint16_t brightness );
bargraph5_output_enable
This function enables the BarGraph LEDs output by setting the BLANK pin to low logic state.
void bargraph5_output_enable ( bargraph5_t *ctx );
bargraph5_output_disable
This function disables the BarGraph LEDs output by setting the BLANK pin to high logic state.
void bargraph5_output_disable ( bargraph5_t *ctx );
This example demonstrates the use of BarGraph 5 Click board by changing the level of all BarGraph output channels.
The demo application is composed of two sections :
Initializes the driver and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
bargraph5_cfg_t bargraph5_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
bargraph5_cfg_setup( &bargraph5_cfg );
BARGRAPH5_MAP_MIKROBUS( bargraph5_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == bargraph5_init( &bargraph5, &bargraph5_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( BARGRAPH5_ERROR == bargraph5_default_cfg ( &bargraph5 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Changes the level of all BarGraph channels once per second. The channels level is displayed on the USB UART.
void application_task ( void )
{
for ( bargraph5_level_t cnt = BARGRAPH5_LEVEL_0; cnt <= BARGRAPH5_LEVEL_4; cnt++ )
{
bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_0, cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_1, BARGRAPH5_LEVEL_4 - cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_2, cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_3, BARGRAPH5_LEVEL_4 - cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_4, cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
bargraph5_set_bar_level ( &bargraph5, BARGRAPH5_BAR_5, BARGRAPH5_LEVEL_4 - cnt, BARGRAPH5_BRIGHTNESS_DEFAULT );
log_printf( &logger, " Bars 0-2-4 level: %u\r\n", ( uint16_t ) cnt );
log_printf( &logger, " Bars 1-3-5 level: %u\r\n\n", ( uint16_t ) ( BARGRAPH5_LEVEL_4 - cnt ) );
Delay_ms ( 1000 );
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.