TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142023 times)
  2. FAT32 Library (75253 times)
  3. Network Ethernet Library (59472 times)
  4. USB Device Library (49492 times)
  5. Network WiFi Library (45268 times)
  6. FT800 Library (44880 times)
  7. GSM click (31415 times)
  8. mikroSDK (30402 times)
  9. microSD click (27778 times)
  10. PID Library (27614 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LED Flash 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.2

mikroSDK Library: 2.0.0.0

Category: LED segment

Downloaded: 90 times

Not followed.

License: MIT license  

LED Flash 4 Click is a compact add-on board for high-performance LED flash and torch applications. This board features the AS1170, a high-current LED driver from ams OSRAM. The AS1170 operates as an inductive, highly efficient DC-DC step-up converter with an external power supply range of 2.7V to 4.4V, featuring two internal current sinks for independent control of onboard flash LEDs. It includes essential protection functions such as flash timeout, overvoltage, overtemperature, undervoltage, and short circuit protection, ensuring reliable operation even in demanding environments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LED Flash 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LED Flash 4 Click" changes.

Do you want to report abuse regarding "LED Flash 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LED Flash 4 Click

LED Flash 4 Click is a compact add-on board for high-performance LED flash and torch applications. This board features the AS1170, a high-current LED driver from ams OSRAM. The AS1170 operates as an inductive, highly efficient DC-DC step-up converter with an external power supply range of 2.7V to 4.4V, featuring two internal current sinks for independent control of onboard flash LEDs. It includes essential protection functions such as flash timeout, overvoltage, overtemperature, undervoltage, and short circuit protection, ensuring reliable operation even in demanding environments.

ledflash4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jun 2024.
  • Type : I2C type

Software Support

We provide a library for the LED Flash 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LED Flash 4 Click driver.

Standard key functions :

  • ledflash4_cfg_setup Config Object Initialization function.

    void ledflash4_cfg_setup ( ledflash4_cfg_t *cfg );
  • ledflash4_init Initialization function.

    err_t ledflash4_init ( ledflash4_t *ctx, ledflash4_cfg_t *cfg );
  • ledflash4_default_cfg Click Default Configuration function.

    err_t ledflash4_default_cfg ( ledflash4_t *ctx );

Example key functions :

  • ledflash4_set_led1_current This function sets the LED1 maximum current in mA.

    err_t ledflash4_set_led1_current ( ledflash4_t *ctx, uint16_t led_current );
  • ledflash4_set_led2_current This function sets the LED2 maximum current in mA.

    err_t ledflash4_set_led2_current ( ledflash4_t *ctx, uint16_t led_current );
  • ledflash4_set_stb_pin This function sets the strobe (STB) pin logic state.

    void ledflash4_set_stb_pin ( ledflash4_t *ctx, uint8_t state );

Example Description

This example demonstrates the use of LED Flash 4 Click board by toggling the LEDs output.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration which sets the Click in flash mode with the LED current of 50mA for both LEDs. The strobe pin is set to active high level type.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ledflash4_cfg_t ledflash4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ledflash4_cfg_setup( &ledflash4_cfg );
    LEDFLASH4_MAP_MIKROBUS( ledflash4_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == ledflash4_init( &ledflash4, &ledflash4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( LEDFLASH4_ERROR == ledflash4_default_cfg ( &ledflash4 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Toggles the LEDs output every 2 seconds using the strobe pin, and displays the LEDs state on the USB UART.

void application_task ( void )
{
    log_printf( &logger, " LEDs ON\r\n\n" );
    ledflash4_set_stb_pin ( &ledflash4, LEDFLASH4_STROBE_PIN_HIGH );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, " LEDs OFF\r\n\n" );
    ledflash4_set_stb_pin ( &ledflash4, LEDFLASH4_STROBE_PIN_LOW );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LEDFlash4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Color 16 Click

0

Color 16 Click is a compact add-on board providing an accurate color-sensing solution. This board features ams AG’s AS7343, a 14-channel multi-purpose spectral sensor offering spectral response through a compatible I2C interface. It has a built-in aperture that controls the light entering the sensor array to increase accuracy, alongside precise optical filters integrated into standard CMOS silicon via deposited interference filter technology. The spectral response is defined by individual channels covering approximately 380nm to 1000nm with 11 channels centered in the visible spectrum, one near-infrared, and a clear channel.

[Learn More]

Fingerprint 2 Click

0

Fingerprint 2 Click is a new fingerprint scanner Click board simplified for everyone's use and it's very easy to implement! This add-on board consists of a high-speed Nuvoton processor which carries high-performance fingerprint algorithm developed for on-board A-172-MRQ fingerprint sensor from company ByNew Technology Inc. This board can be used as a standalone device when connected over USB to PC or it can be controlled by the MCU/processor over serial UART interface.

[Learn More]

Stretch click

10

Stretch click is a mikroBUS add-on board with circuitry for measuring stretch forces with conductive rubber cords. The click has screw terminals for connecting 2mm-diameter and 1m-long conductive rubber cord. The resistance of the chord increases when stretched, impacting the voltage available on the AN pin.

[Learn More]