TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (132 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140957 times)
  2. FAT32 Library (73512 times)
  3. Network Ethernet Library (58321 times)
  4. USB Device Library (48508 times)
  5. Network WiFi Library (44132 times)
  6. FT800 Library (43686 times)
  7. GSM click (30546 times)
  8. mikroSDK (29286 times)
  9. PID Library (27220 times)
  10. microSD click (26931 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LTE Cat.1 3 EX Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: GSM/LTE

Downloaded: 55 times

Not followed.

License: MIT license  

LTE Cat.1 3 Click (for Europe) is a compact add-on board for reliable 4G wireless communication. This board features the EG91EXGA-128-SGNS, an LTE Cat 1 IoT module that meets the 3GPP Release 11 standard from Quectel. It supports multiple wireless standards, including LTE-FDD, WCDMA, and GSM, ensuring broad network compatibility. Key features include multi-band LTE support (B1/B3/B7/B8/B20/B28), RX diversity for bands B1 and B8, and multi-constellation GNSS (GPS, GLONASS, BeiDou/Compass, Galileo, QZSS). It also integrates a 16-bit mono audio codec for voice functionality with support for CTIA standard headphones.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LTE Cat.1 3 EX Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LTE Cat.1 3 EX Click" changes.

Do you want to report abuse regarding "LTE Cat.1 3 EX Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LTE Cat.1 3 EX Click

LTE Cat.1 3 Click (for Europe) is a compact add-on board for reliable 4G wireless communication. This board features the EG91EXGA-128-SGNS, an LTE Cat 1 IoT module that meets the 3GPP Release 11 standard from Quectel. It supports multiple wireless standards, including LTE-FDD, WCDMA, and GSM, ensuring broad network compatibility. Key features include multi-band LTE support (B1/B3/B7/B8/B20/B28), RX diversity for bands B1 and B8, and multi-constellation GNSS (GPS, GLONASS, BeiDou/Compass, Galileo, QZSS). It also integrates a 16-bit mono audio codec for voice functionality with support for CTIA standard headphones.

ltecat13_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Mar 2024.
  • Type : UART type

Software Support

We provide a library for the LTE Cat.1 3 EX Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LTE Cat.1 3 EX Click driver.

Standard key functions :

  • ltecat13ex_cfg_setup Config Object Initialization function.

    void ltecat13ex_cfg_setup ( ltecat13ex_cfg_t *cfg );
  • ltecat13ex_init Initialization function.

    err_t ltecat13ex_init ( ltecat13ex_t *ctx, ltecat13ex_cfg_t *cfg );

Example key functions :

  • ltecat13ex_write_register This function writes a data byte into the selected register address.

    err_t ltecat13ex_write_register ( ltecat13ex_t *ctx, uint8_t reg, uint8_t data_in );
  • ltecat13ex_max9860_cfg This function is used to set basic config for MAX9860 of LTE Cat.1 3 EX Click board.

    err_t ltecat13ex_max9860_cfg ( ltecat13ex_t *ctx );
  • ltecat13ex_send_sms_pdu This function sends text message to a phone number in PDU mode.

    err_t ltecat13ex_send_sms_pdu ( ltecat13ex_t *ctx, uint8_t *service_center_number, uint8_t *phone_number, uint8_t *sms_text );

Example Description

Application example shows device capability of connecting to the network and sending SMS, TCP/UDP messages, calling the selected number, or getting GNSS location using standard "AT" commands.

The demo application is composed of two sections :

Application Init

Sets the device configuration for sending SMS, TCP/UDP messages, calling the selected number or GNSS location.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ltecat13ex_cfg_t ltecat13ex_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ltecat13ex_cfg_setup( &ltecat13ex_cfg );
    LTECAT13EX_MAP_MIKROBUS( ltecat13ex_cfg, MIKROBUS_1 );
    if ( UART_ERROR == ltecat13ex_init( &ltecat13ex, &ltecat13ex_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    ltecat13ex_process( );
    ltecat13ex_clear_app_buf( );
    Delay_ms ( 1000 );

    if ( 0 == ltecat13ex_get_ri_pin( &ltecat13ex ) )
    {
        ltecat13ex_start_up( &ltecat13ex );
        error_flag = ltecat13ex_rsp_check( LTECAT13EX_RSP_RDY );
        ltecat13ex_error_check( error_flag );
    }

    // Restart device
    #define MIN_FUN_DEVICE "0"
    ltecat13ex_send_cmd_with_params( &ltecat13ex, LTECAT13EX_CMD_CFUN, MIN_FUN_DEVICE );
    error_flag = ltecat13ex_rsp_check( LTECAT13EX_RSP_OK );
    ltecat13ex_error_check( error_flag );

    #define FULL_FUN_DEVICE "1"
    ltecat13ex_send_cmd_with_params( &ltecat13ex, LTECAT13EX_CMD_CFUN, FULL_FUN_DEVICE );
    error_flag = ltecat13ex_rsp_check( LTECAT13EX_RSP_OK );
    ltecat13ex_error_check( error_flag );

    // Check communication
    ltecat13ex_send_cmd( &ltecat13ex, LTECAT13EX_CMD_AT );
    error_flag = ltecat13ex_rsp_check( LTECAT13EX_RSP_OK );
    ltecat13ex_error_check( error_flag );

    log_info( &logger, " Application Task " );
    example_state = LTECAT13EX_CONFIGURE_FOR_NETWORK;
}

Application Task

Depending on the selected demo example, it sends an SMS message (in PDU or TXT mode) or a TCP/UDP message, calls the selected number or gets GNSS location.

void application_task ( void ) 
{
    switch ( example_state )
    {
        case LTECAT13EX_CONFIGURE_FOR_NETWORK:
        {
            if ( LTECAT13EX_OK == ltecat13ex_cfg_for_network( ) )
            {
                example_state = LTECAT13EX_WAIT_FOR_CONNECTION;
            }
            break;
        }
        case LTECAT13EX_WAIT_FOR_CONNECTION:
        {
            if ( LTECAT13EX_OK == ltecat13ex_check_connection( ) )
            {
                example_state = LTECAT13EX_CONFIGURE_FOR_EXAMPLE;
            }
            break;
        }
        case LTECAT13EX_CONFIGURE_FOR_EXAMPLE:
        {
            if ( LTECAT13EX_OK == ltecat13ex_cfg_for_example( ) )
            {
                example_state = LTECAT13EX_EXAMPLE;
            }
            break;
        }
        case LTECAT13EX_EXAMPLE:
        {
            ltecat13ex_example( );
            break;
        }
        default:
        {
            log_error( &logger, " Example state." );
            break;
        }
    }
}

Note

In order for the examples to work, user needs to set the APN and SMSC (SMS PDU mode only) of entered SIM card as well as the phone number (SMS mode only) to which he wants to send an SMS. Enter valid values for the following macros: SIM_APN, SIM_SMSC and PHONE_NUMBER_TO_MESSAGE.

Example:

  • SIM_APN "internet"
  • SIM_SMSC "+381610401"
  • PHONE_NUMBER_TO_MESSAGE "+381659999999"

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LTECat13EX

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

VCP Monitor 2 click

5

VCP Monitor 2 Click is a three-channel, high-side current and bus voltage monitor with alert indication function ensuring the intended application works within desired operating conditions.

[Learn More]

H-Bridge 14 Click

0

H-Bridge 14 Click is a compact add-on board with an H-Bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8873, an automotive H-Bridge motor driver from Texas Instruments. The DRV8873 is an N-channel H-Bridge motor driver that can drive one bidirectional brushed DC motor, two unidirectional brushed DC motors, solenoids, or other resistive inductive loads.

[Learn More]

MCP2517FD click

6

MCP2517FD Click is a compact add-on board representing a complete CAN solution used as a control node in a CAN network. This board features the MCP2517FD and ATA6563, an external CAN FD controller with an SPI interface, and a high-speed CAN transceiver from Microchip. The ATA6563, a low-level physical layer IC (PHY), provides a physical connection with the CAN bus itself, while the CAN controller MCP2517FD represents an interface between the MCU and the PHY. It features three operating modes with dedicated fail-safe features, remote wake-up via CAN, and ideally passive behavior when powered off on the CAN bus. This Click board™ is suitable for developing a wide range of automotive diagnostic applications, even on MCUs that don’t support CAN interface.

[Learn More]