TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139842 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47739 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LR 11 868MHz Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.1

mikroSDK Library: 2.0.0.0

Category: LoRa

Downloaded: 31 times

Not followed.

License: MIT license  

LR 11 Click - 868MHz is a compact add-on board for long-range, low-power wireless communication in IoT applications. This board features the 453-00140R, an ultra-low power LoraWAN module Ezurio (part of the RM126x series), integrating the Silicon Labs EFR32 SoC and the Semtech SX1261 radio. It supports LoRaWAN classes A, B, and C, offering secure, scalable, and bi-directional communication. It operates in the 863-870MHz frequency range with a typical transmit power of up to 14dBm and a communication range of up to 15km.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LR 11 868MHz Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LR 11 868MHz Click" changes.

Do you want to report abuse regarding "LR 11 868MHz Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LR 11 868MHz Click

LR 11 Click - 868MHz is a compact add-on board for long-range, low-power wireless communication in IoT applications. This board features the 453-00140R, an ultra-low power LoraWAN module Ezurio (part of the RM126x series), integrating the Silicon Labs EFR32 SoC and the Semtech SX1261 radio. It supports LoRaWAN classes A, B, and C, offering secure, scalable, and bi-directional communication. It operates in the 863-870MHz frequency range with a typical transmit power of up to 14dBm and a communication range of up to 15km.

lr11868mhz_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jul 2024.
  • Type : UART type

Software Support

We provide a library for the LR 11 868MHz Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LR 11 868MHz Click driver.

Standard key functions :

  • lr11868mhz_cfg_setup Config Object Initialization function.

    void lr11868mhz_cfg_setup ( lr11868mhz_cfg_t *cfg );
  • lr11868mhz_init Initialization function.

    err_t lr11868mhz_init ( lr11868mhz_t *ctx, lr11868mhz_cfg_t *cfg );

Example key functions :

  • lr11868mhz_reset_device This function resets the device by toggling the reset pin logic state.

    void lr11868mhz_reset_device ( lr11868mhz_t *ctx );
  • lr11868mhz_cmd_run This function sends a specified command with or without parameters to the Click module.

    void lr11868mhz_cmd_run ( lr11868mhz_t *ctx, uint8_t *cmd, uint8_t *param );
  • lr11868mhz_cmd_set This function sets a value to a specified command parameter of the Click module.

    void lr11868mhz_cmd_set ( lr11868mhz_t *ctx, uint8_t *cmd, uint8_t *param_id, uint8_t *value );

Example Description

This example demonstrates the use of LR 11 868MHz Click board by showing the communication between two Click boards configured in P2P network mode.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    lr11868mhz_cfg_t lr11868mhz_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    lr11868mhz_cfg_setup( &lr11868mhz_cfg );
    LR11868MHZ_MAP_MIKROBUS( lr11868mhz_cfg, MIKROBUS_1 );
    if ( UART_ERROR == lr11868mhz_init( &lr11868mhz, &lr11868mhz_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );

    app_state = LR11868MHZ_POWER_UP;
    log_printf( &logger, ">>> APP STATE - POWER UP <<<\r\n\n" );
}

Application Task

Application task is split in few stages:

  • LR11868MHZ_POWER_UP: Powers up the device, performs a device factory reset and reads system information.
  • LR11868MHZ_CONFIG_EXAMPLE: Configures device for the LoRa P2P network mode.
  • LR11868MHZ_EXAMPLE: Performs a LoRa P2P example by exchanging messages with another LR 11 868MHz Click board. One device should be set to NODE_0_ADDRESS, and the other to NODE_1_ADDRESS.
void application_task ( void )
{
    switch ( app_state )
    {
        case LR11868MHZ_POWER_UP:
        {
            if ( LR11868MHZ_OK == lr11868mhz_power_up( &lr11868mhz ) )
            {
                app_state = LR11868MHZ_CONFIG_EXAMPLE;
                log_printf( &logger, ">>> APP STATE - CONFIG EXAMPLE <<<\r\n\n" );
            }
            break;
        }
        case LR11868MHZ_CONFIG_EXAMPLE:
        {
            if ( LR11868MHZ_OK == lr11868mhz_config_example( &lr11868mhz ) )
            {
                app_state = LR11868MHZ_EXAMPLE;
                log_printf( &logger, ">>> APP STATE - EXAMPLE <<<\r\n\n" );
            }
            break;
        }
        case LR11868MHZ_EXAMPLE:
        {
            lr11868mhz_example( &lr11868mhz );
            break;
        }
        default:
        {
            log_error( &logger, " APP STATE." );
            break;
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LR11868MHz

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Proximity 11 click

5

Proximity 11 Click is a close-range proximity sensing Click board, equipped with the RPR-0521RS, a very accurate and power-efficient proximity and ambient Light Sensor with IrLED. It allows an accurate proximity detection for a maximum distance of 100mm.

[Learn More]

GSM/GNSS 2 Click

0

GSM/GNSS 2 Click combines GPS/GLONASS location tracking with GSM module capability for mobile communication. The Click carries SIM868 quad-band GSM/GPRS module.

[Learn More]

Motion 2 Click

0

Motion 2 Click is a Click board™ based on EKMC1607112, PIR motion sensor from Panasonic Corporation that's used as human motion detector. Also featured on Motion 2 Click bord is TLP241A photorelay from Toshiba that is used to provide a reinforced galvanic isolation for the external signals used to drive some external high power electronic equipment when motion is detected. It's allowing up to 40V between the SSR contacts in OFF state, and currents up to 2A while in ON state, thanks to a very low ON-state resistance. Motion 2 Click board™ is supported by a mikroSDK compliant library, which includes functions that simplify software development. This Click board™ comes as a fully tested product, ready to be used on a system equipped with the mikroBUS™ socket.

[Learn More]