TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141361 times)
  2. FAT32 Library (74205 times)
  3. Network Ethernet Library (58776 times)
  4. USB Device Library (48854 times)
  5. Network WiFi Library (44564 times)
  6. FT800 Library (44149 times)
  7. GSM click (30883 times)
  8. mikroSDK (29739 times)
  9. PID Library (27372 times)
  10. microSD click (27309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EERAM 3v3 click

Rating:

5

Author: MIKROE

Last Updated: 2019-11-06

Package Version: 1.0.0.1

mikroSDK Library: 1.0.0.0

Category: SRAM

Downloaded: 7153 times

Not followed.

License: MIT license  

Add memory to your project with EERAM 3.3V click. It carries the 47L16/47C16 I2C serial EERAM from Microchip. The click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over I2C interface, with additional functionality provided by the INT pin on the mikroBUSâ„¢ line.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EERAM 3v3 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EERAM 3v3 click" changes.

Do you want to report abuse regarding "EERAM 3v3 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

EERAM click

EERAM click

Native view of the EERAM 3.3V click board.

View full image
EERAM 3.3V Click

EERAM 3.3V Click

Front and back view of the EERAM 3.3V click board.

View full image

Library Description

Key functions:

  • void eeram3v3_read (uint16_t address, uint8_t * pDataOut, uint8_t countOut); - Reads the data from the selected SRAM address onwards.
  • void eeram3v3_write (uint16_t address, uint8_t * pDataIn, uint8_t countIn); - Writes the data to SRAM memory array.

Examples Description

The application is composed of three sections:

  • System Initialization - I2C module initialization
  • Application Initialization - EERAM3V driver initialization
  • Application Task - Writing data to click memory and displaying the read data via UART.
void applicationTask()
{
 mikrobus_logWrite("Writing MikroE to SRAM memory, from address 0x0150:",
_LOG_LINE);
 eeram3v3_write (0x0150, wrData, 9);
 mikrobus_logWrite("Reading 9 bytes of SRAM memory, from address 0x0150:",
_LOG_LINE);
 eeram3v3_read(0x0150,rdData,9);
 mikrobus_logWrite("Data read: ",_LOG_TEXT);
 mikrobus_logWrite(rdData,_LOG_LINE);
 Delay_ms(1000);

}

Other mikroE Libraries used in the example:

  • I2C
  • UART

Additional notes and information

Depending on the development board you are using, you may need USB UART click,  USB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

SPI Isolator 3 Click

0

SPI Isolator 3 Click is a compact add-on board that contains a digital isolator optimized for a serial peripheral interface. This board features the MAX14483, a 6-channel 3.75kVRMS digital galvanic isolator with a very low propagation delay on the SDI, SDO, and SCLK channels from Maxim Integrated. Besides a second enable control input, which allows MAX14483 to isolate multiple SPI devices, and an auxiliary channel available for passing timing or control signals from the master side to the slave side, the MAX14483 also possesses power monitors provided for both power domains to signal if the opposite side of the isolator is ready for operation.

[Learn More]

Flicker Click

0

FLICKER Click is the perfect, simple solution if you need to turn a device on and off at specific time intervals, like blinking LED commercials, alarm system lights, or any other signalling lights.

[Learn More]

1x4 RGB Click

0

1x4 RGB Click is a compact add-on board that creates vivid and dynamic lighting effects. This board features the LP5812, an advanced RGB LED driver from Texas Instruments. It features ultra-low operation current, an autonomous animation engine, and support for both analog and PWM dimming. The board operates with 3.3V or 5V logic voltage levels and communicates with the host MCU via a standard 2-wire I2C interface. It is suitable for portable and wearable electronics, gaming, home entertainment, IoT, networking, industrial HMI, and many more.

[Learn More]