TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (91 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139264 times)
  2. FAT32 Library (71752 times)
  3. Network Ethernet Library (57128 times)
  4. USB Device Library (47432 times)
  5. Network WiFi Library (43092 times)
  6. FT800 Library (42408 times)
  7. GSM click (29835 times)
  8. mikroSDK (28100 times)
  9. PID Library (26886 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MAC Address click

Rating:

1

Author: MIKROE

Last Updated: 2019-05-27

Package Version: 1.0.0.1

mikroSDK Library: 1.0.0.0

Category: EEPROM

Downloaded: 4062 times

Not followed.

License: MIT license  

MAC Address click provides a unique node address for your application. It also has 1Kbit of writable EEPROM memory. MAC Address click carries the 24AA025E64 2K I2C Serial EEPROM with EUI-64 node identity. The click is designed to run on either 3.3V or 5V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MAC Address click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MAC Address click" changes.

Do you want to report abuse regarding "MAC Address click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Front/Back View

Front/Back View

Front and Back view of the MAC Address Click board.

View full image

Library Description

The library covers all the necessary functions to control MAC Address click board. 
The library performs the communication with the device via I2C protocol by writing to registers and by reading from registers.

Key functions:

  • void macaddress_getMAC( uint8_t *readMac ) - Read MAC address function.
  • void macaddress_writeByte( uint8_t regAddress, uint8_t writeData ) - Generic write the byte of data function.
  • void macaddress_readMulti( uint8_t startAddr, uint8_t *readData, uint8_t nBytes ) - Generic read data - sequential function.

Examples description

The application is composed of the three sections :

  • System Initialization - Initializes I2C structures and start to write log.
  • Application Initialization - Initialization driver enables - I2C, also write log.
  • Application Task - This is an example which demonstrates the use of MAC Address click board. MAC Address click communicates with register via I2C protocol by the write to register and read from the register. This example shows write/read single byte and sequential write/read from EEPROM. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes for every 1 sec.
void applicationTask()
{
    macaddress_getMAC( &readMac );
    Delay_100ms();

    mikrobus_logWrite( " MAC Address : ", _LOG_TEXT );
    for( cnt = 0; cnt < 6; cnt++ )
    {
        ByteToHex( readMac[ cnt ], logText );
        ltrim( logText );
        mikrobus_logWrite( logText, _LOG_TEXT );

        if( cnt != 5 )
        {
            mikrobus_logWrite( ":", _LOG_TEXT );
        }
    }

    mikrobus_logWrite( "", _LOG_LINE );
    mikrobus_logWrite( "---------------------------------", _LOG_LINE );
    mikrobus_logWrite( " Write Single Byte Test : ", _LOG_LINE );

    macaddress_writeByte( bufferLoop, bufferLoop + 1 );
    ByteToHex( bufferLoop + 1, logText );
    ltrim( logText );

    mikrobus_logWrite( " Byte value [ ", _LOG_TEXT );
    mikrobus_logWrite( logText, _LOG_TEXT );
    mikrobus_logWrite( " ] successfully written to [ ", _LOG_TEXT );
    ByteToHex( bufferLoop, logText );
    ltrim( logText );
    mikrobus_logWrite( logText, _LOG_TEXT );
    mikrobus_logWrite( " ] address", _LOG_LINE );
    mikrobus_logWrite( "-----------------------------", _LOG_TEXT );
    mikrobus_logWrite( "-----------------------------", _LOG_LINE );
    mikrobus_logWrite( " Read Single Byte Test ", _LOG_TEXT );

    macaddress_readByte( bufferLoop );
    ByteToHex( bufferLoop + 1, logText );
    ltrim( logText );
    mikrobus_logWrite( "", _LOG_LINE );
    mikrobus_logWrite( " Byte value [ ", _LOG_TEXT );
    mikrobus_logWrite( logText, _LOG_TEXT );
    mikrobus_logWrite( " ] successfully read from  [ ", _LOG_TEXT );
    ByteToHex( bufferLoop, logText );
    ltrim( logText );
    mikrobus_logWrite( logText, _LOG_TEXT );
    mikrobus_logWrite( " ] address", _LOG_LINE );
    mikrobus_logWrite( "-----------------------------", _LOG_TEXT );
    mikrobus_logWrite( "-----------------------------", _LOG_LINE );
    
    macaddress_writeMulti( bufferLoop, &buffer, 12 );
    Delay_100ms();

    mikrobus_logWrite( " Array values : ", _LOG_LINE );
    for( cnt = 0; cnt < 12; cnt++ )
    {
        ByteToHex( buffer[cnt], logText );
        ltrim( logText );
        mikrobus_logWrite( "[ ", _LOG_TEXT );
        mikrobus_logWrite( logText, _LOG_TEXT );
        mikrobus_logWrite( " ]", _LOG_TEXT );
    }

    ByteToHex( bufferLoop, logText );
    ltrim( logText );
    mikrobus_logWrite( " successfully written to [ ", _LOG_TEXT );
    mikrobus_logWrite( logText, _LOG_TEXT );
    mikrobus_logWrite( " ] address and forward", _LOG_LINE );
    mikrobus_logWrite( "-----------------------------", _LOG_TEXT );
    mikrobus_logWrite( "-----------------------------", _LOG_LINE );

    macaddress_readMulti( bufferLoop, &buffer, 12 );
    Delay_100ms();

    mikrobus_logWrite( " Array values : ", _LOG_LINE );
    for( cnt = 0; cnt < 12; cnt++ )
    {
        ByteToHex( buffer[cnt], logText );
        ltrim( logText );
        mikrobus_logWrite( "[ ", _LOG_TEXT );
        mikrobus_logWrite( logText, _LOG_TEXT );
        mikrobus_logWrite( " ]", _LOG_TEXT );
    }

    ByteToHex( bufferLoop, logText );
    ltrim( logText );
    mikrobus_logWrite( " successfully read from [ ", _LOG_TEXT );
    mikrobus_logWrite( logText, _LOG_TEXT );
    mikrobus_logWrite( " ] address and forward", _LOG_LINE );
    mikrobus_logWrite( "-----------------------------", _LOG_TEXT );
    mikrobus_logWrite( "-----------------------------", _LOG_LINE );

    if ( bufferLoop >= _MACADDRESS_END_ADDR )
    {
        bufferLoop = 0;
    }

    bufferLoop++;
    Delay_1sec();
}

Other mikroE Libraries used in the example:

  • I2C
  • UART
  • Conversions

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Brushless 24 Click

0

Brushless 24 Click is a compact add-on board that controls brushless DC (BLDC) motors with any MCU. This board features the DRV10866, a 3- phase sensorless motor driver from Texas Instruments with integrated power MOSFETs with current drive capability up to 800mA peak. The DRV10866 implements a 150° commutation (sensorless BEMF control scheme) for a 3-phase motor alongside a synchronous rectification mode of operation that achieves increased efficiency for motor driver applications. Besides choosing the motor speed and a wide operating voltage range of up to 5V, it also has several built-in protection circuits, such as undervoltage, lock detection, voltage surge protection, and overtemperature.

[Learn More]

Joystick 3 Click

0

Joystick 3 Click is a compact add-on board that can fulfill your directional analog input needs. This board features 2765, a high-quality mini 2-axis analog output thumbstick from Adafruit Industries. This small joystick is a 'self-centering' analog-type with a black rocker cap similar to the PSP joysticks. It comprises two 10kΩ potentiometers, one for up/down and another for left/right direction. Knowing that this joystick represents an analog type, it connects with mikroBUS™ through the SPI interface through the MCP3204 12-bit A/D converter.

[Learn More]

Temp-Log Click

0

Temp-Log Click is a precise ambient temperature measurement device, equipped with 8Kbit (1024 bytes) of EEPROM memory, which can be used to permanently store system configuration or log application specific or user preference data. This Click covers a range of temperatures from -55°C to +125°C with the highest accuracy of ±0.5°C, in the range of 0°C to 85°C. The device can also send an ALERT signal to the INT pin of the mikroBUS™ every time programmed temperature thresholds are reached.

[Learn More]