TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141688 times)
  2. FAT32 Library (74758 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44525 times)
  7. GSM click (31196 times)
  8. mikroSDK (30098 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

SwipeSwitch click

Rating:

5

Author: MIKROE

Last Updated: 2019-05-10

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Capacitive

Downloaded: 2146 times

Not followed.

License: MIT license  

SwipeSwitch click is capacitive touch, gesture, and proximity sensing Click board, which is equipped with the IQS266, an integrated trackpad controller circuit which features ProxSense® and IQ Switch® technologies.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "SwipeSwitch click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "SwipeSwitch click" changes.

Do you want to report abuse regarding "SwipeSwitch click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)

mikroSDK Library Blog

SwipeSwitch click

SwipeSwitch click

Native view of the SwipeSwitch click board.

View full image
SwipeSwitch click

SwipeSwitch click

Front and back view of the SwipeSwitch click board.

View full image

Library Description

This library contains all the functions required to work with SwipeSwitch click.

Key functions:

  • void swipeswitch_init() - Function for initialization chip.
  • void swipeswitch_goToEventMode() - Function for go to Event mode.
  • uint8_t swipeswitch_waitForReady() - Function for checking RDY pins.

Examples description

The application is composed of the three sections :

  • System Initialization - Initialization I2C module and sets INT pin as INPUT.
  • Application Initialization - Initialization and configuration of the chip for measurement.
  • Application Task - (code snippet) : In the first test mode, it checks whether or not a new event ocurred (TAP or SWIPE). If it did, it writes out data regarding that event via UART. In the second test mode, X and Y coordinates are being read and logged via UART.

Note: After reading data or status registers, there is a certain time which must pass until the device is ready again. The device is ready for a new conversion and reading after the Ready pin is LOW.

void applicationTask()
{
    if(displayMode == 0)
    {
        while(swipeswitch_waitForReady() != 0);
        events = swipeswitch_readEvents();
        while(swipeswitch_waitForReady() != 0);
        gestures = swipeswitch_readGestures();

        if((events & (_SWIPESWITCH_EVENT_SWIPE)) != 0 )
        {
            if((gestures & _SWIPESWITCH_GESTURE_SWIPE_UP) != 0)
            {
                mikrobus_logWrite("SWIPE UP", _LOG_LINE);
            }
            if((gestures & _SWIPESWITCH_GESTURE_SWIPE_DOWN) != 0)
            {
                mikrobus_logWrite("SWIPE DOWN", _LOG_LINE);
            }
            if((gestures & _SWIPESWITCH_GESTURE_SWIPE_LEFT) != 0)
            {
                mikrobus_logWrite("SWIPE LEFT", _LOG_LINE);
            }
            if((gestures & _SWIPESWITCH_GESTURE_SWIPE_RIGHT) != 0)
            {
                mikrobus_logWrite("SWIPE RIGHT", _LOG_LINE);
            }
        }
        else if ((events & (_SWIPESWITCH_EVENT_TAP)) != 0)
        {
            mikrobus_logWrite("TAP", _LOG_LINE);
        }
    }
    else
    {
        while(swipeswitch_waitForReady() != 0);
        xCoordinate = swipeswitch_readXCoordinate();
        while(swipeswitch_waitForReady() != 0);
        yCoordinate = swipeswitch_readYCoordinate();

        if((xCoordinate != oldXCoordinate) || (yCoordinate != oldYCoordinate))
        {
            mikrobus_logWrite("Coordinate : (", _LOG_TEXT);
            IntToStr(xCoordinate, demoText);
            mikrobus_logWrite(demoText, _LOG_TEXT);
            mikrobus_logWrite(",", _LOG_TEXT);
            IntToStr(yCoordinate, demoText);
            mikrobus_logWrite(demoText, _LOG_TEXT);
            mikrobus_logWrite(")", _LOG_LINE);
            oldXCoordinate = xCoordinate;
            oldYCoordinate = yCoordinate;
        }
    }
    Delay_ms( 300 );
}

Other mikroE Libraries used in the example:

  • I2C

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

RTC Demo

0

The application demonstrates RTC SDK functionality.

[Learn More]

Headphone AMP 3 Click

0

Headphone AMP 3 Click is a compact add-on board that contains a stereo headphone amplifier. This board features the INA1620, a high-fidelity audio operational amplifier with integrated thin-film resistors and EMI filters from Texas Instruments. Over its dual amplifiers, it achieves a very low noise density and drives a 32Ω load at 150mW of output power.

[Learn More]

Digi Pot 4 Click

0

DIGI POT 4 Click is a digitally controlled dual potentiometer, with the resistance of 10KΩ. It has a 10bit resolution which allows for a very smooth linear wiper positioning through 1024 steps.

[Learn More]