TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (393 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (124 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140608 times)
  2. FAT32 Library (73106 times)
  3. Network Ethernet Library (58101 times)
  4. USB Device Library (48266 times)
  5. Network WiFi Library (43846 times)
  6. FT800 Library (43357 times)
  7. GSM click (30390 times)
  8. mikroSDK (29045 times)
  9. PID Library (27125 times)
  10. microSD click (26746 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

REC-PLAY click

Rating:

5

Author: MIKROE

Last Updated: 2019-03-05

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Signal processing

Downloaded: 4435 times

Not followed.

License: MIT license  

Rec&amp;Play Click is a digital voice recorder on a Click board. It is based around the ISD3900, a multi-message record and playback device.

No Abuse Reported
  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Rec-Play click

Rec-Play click

Native view of the Rec-Play click board.

View full image
Rec-Play click

Rec-Play click

Front and back view of the Rec-Play click board.

View full image

Library Description

Library offers a choice to perform control of the REC&PLAY Click board by sending commands to the ISD3900 via SPI interface. Commands include message recording, recorded message playing, sending or receiving compressed audio data, digital reading and writting, device configuration, device status and interrupt checking... All functions return device status byte, so on that way user can check status of the device and SPI interface after each sent command. For more details check documentation.

Key functions:

  • T_RECPLAY_RETVAL recplay_recordMsg( void ) - Function initiates a managed record at first available location in memory.
  • T_RECPLAY_RETVAL recplay_playMsg( uint32_t memAddr, uint16_t sectorOffset ) - Function initiates a play of a recorded message starting at a specified address, with a specified sector offset.
  • T_RECPLAY_RETVAL recplay_stop( void ) - Function stops any current audio command.
  • T_RECPLAY_RETVAL recplay_eraseMsg( uint32_t memAddr ) - Function erases the message starting at the specified address.

Examples description

The application is composed of the three sections :

  • System Initialization - Initializes peripherals and pins.
  • Application Initialization - Initializes SPI interface in properly mode and performs the all necessary commands to put device in properly working mode (chip reset, chip power up, chip erasing, clock configuration).
  • Application Task - (code snippet) - Performs the chip configuration for recording message via microphone, then records a message for 8 seconds to specified memory location. After that reads the recorded message address with message length and then plays a recorded message. When playback is done erases a recorded message from memory. Repeats the all operation every 10 seconds. Note : The ISD3900 must be properly configured to work in record mode every time when user wants to record a message. When user wants to play a recorded message, then ISD3900 must be properly configured, but now to work in play mode.
void applicationTask()
{
    mikrobus_logWrite( "Preparing to record a message...", _LOG_LINE );
    for (i = 0; i < 32; i++)
    {
        if ((i != _RECPLAY_CFG0A_REG) && (i != _RECPLAY_CFG1C_REG) && (i != _RECPLAY_CFG1E_REG))
        {
            waitReady();
            tempVar = configRecMic[ i ];
            statusByte = recplay_writeCnfgReg( i, &tempVar, 1 );
        }
    }
    waitReady();
    Delay_ms( 2000 );

    mikrobus_logWrite( "Message Recording", _LOG_TEXT );
    statusByte = recplay_recordMsgAddr( 0x12000 );
    timeRecord( 8 );
    statusByte = recplay_stop();
    waitCmdFin();
    mikrobus_logWrite( "End of recording", _LOG_LINE );
    
    mikrobus_logWrite( "---------------------------------------", _LOG_LINE );
    statusByte = recplay_readMsgAddr( &messageAddr, &messageLength );
    LongWordToHex( messageAddr, text );
    mikrobus_logWrite( "Message Address: 0x", _LOG_TEXT );
    mikrobus_logWrite( text, _LOG_LINE );
    WordToStr( messageLength, text );
    mikrobus_logWrite( "Message Length: ", _LOG_TEXT );
    mikrobus_logWrite( text, _LOG_LINE );
    mikrobus_logWrite( "---------------------------------------", _LOG_LINE );
    Delay_ms( 1000 );

    mikrobus_logWrite( "Preparing to play a message...", _LOG_LINE );
    setVolume( 100 );
    for (i = 0; i < 32; i++)
    {
        if ((i != _RECPLAY_CFG0A_REG) && (i != _RECPLAY_CFG1C_REG) && (i != _RECPLAY_CFG1E_REG))
        {
            waitReady();
            if (i == _RECPLAY_CFG03_REG)
            {
                tempVar = volume;
            }
            else
            {
                tempVar = configPlayPwmSpk[ i ];
            }
            statusByte = recplay_writeCnfgReg( i, &tempVar, 1 );
        }
    }
    waitReady();
    Delay_ms( 2000 );

    mikrobus_logWrite( "Message is playing...", _LOG_LINE );
    statusByte = recplay_playMsg( 0x12000, 0 );
    waitCmdFin();
    mikrobus_logWrite( "End of playing", _LOG_LINE );
    
    mikrobus_logWrite( "---------------------------------------", _LOG_LINE );
    ByteToHex( statusByte, text );
    mikrobus_logWrite( "Status Byte: 0x", _LOG_TEXT );
    mikrobus_logWrite( text, _LOG_LINE );
    ByteToHex( interrByte, text );
    mikrobus_logWrite( "Interrupt Byte: 0x", _LOG_TEXT );
    mikrobus_logWrite( text, _LOG_LINE );
    mikrobus_logWrite( "---------------------------------------", _LOG_LINE );
    Delay_ms( 1000 );
    
    mikrobus_logWrite( "Message Erasing...", _LOG_LINE );
    statusByte = recplay_eraseMsg( 0x12000 );
    waitCmdFin();
    mikrobus_logWrite( "End of erasing", _LOG_LINE );
    
    mikrobus_logWrite( "***************************************", _LOG_LINE );
    mikrobus_logWrite( "", _LOG_LINE );
    Delay_ms( 10000 );
}

Additional Functions :

  • void waitCmdFin( - Waits until current command has properly finished.
  • void waitReady() - Waits until SPI interface was ready for new command.
  • void waitPowerUp() - Waits until ISD3900 has powered up.
  • void timeRecord( uint32_t secondsTime ) - Performs the desired time in seconds for message recording.
  • void setVolume( uint8_t volumeSel )  - Sets a volume on the desired value (0 - 100%) for a message playing.

Other mikroE Libraries used in the example:

  • Conversions
  • SPI
  • UART

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

IR Grid 2 Click

0

IR Grid 2 Click is a thermal imaging sensor. It has an array of 768 very sensitive factory calibrated IR elements (pixels), arranged in 32 rows of 24 pixels. Each one of them is measuring an object temperature up to 300˚C within its local Field of View (FOV). The MLX90640ESF-BAB IR sensor used on this Click board™ has just four pins, and it is mounted inside of the industry standard TO39 package. It is equipped with 2Kbit of EEPROM for storing the compensation and calibration parameters.

[Learn More]

PWR Meter 3 30A Click

0

PWR Meter 3 Click - 30A is a compact add-on board that measures voltage and current through the connected load. This board features the ACS37800KMACTR-030B3-I2C, an I2C-configurable power monitoring solution from Allegro MicroSystems, which simplifies the addition of power monitoring to many AC/DC powered systems. The ACS37800KMACLU-090B3-I2C Hall-effect-based current sensing technology achieves reinforced isolation ratings (4800 VRMS) alongside a reliable ±30A bidirectional current sensing. It also has two LED indicators for the realization of visual detection of some anomalies in operation, such as under/overvoltage and fast overcurrent fault detection.

[Learn More]

Relay 7 Click

0

Relay 7 Click is a compact add-on board for precise load control and monitoring applications. This board features four CRR05-1As, a CRR series reed relay from Standex Electronics, well-known for its ultra-miniature SMD design and high insulation resistance. These four relays each have four load connection terminals and orange LED indicators that signal the operational status, ensuring clear and immediate feedback. These relays are highly reliable and come in a rugged thermoset over-molded package with ceramic substrate and a typical 1013Ω insulation resistance. They support a coil voltage of 5VDC and switching capabilities up to 170VDC/0.5A/10W. It is ideally suited for test and measurement (ATE) equipment, instrumentation, and telecommunications.

[Learn More]
Close menu