TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140553 times)
  2. FAT32 Library (73048 times)
  3. Network Ethernet Library (58051 times)
  4. USB Device Library (48224 times)
  5. Network WiFi Library (43833 times)
  6. FT800 Library (43295 times)
  7. GSM click (30360 times)
  8. mikroSDK (28993 times)
  9. PID Library (27119 times)
  10. microSD click (26723 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo 11 click

Rating:

5

Author: MIKROE

Last Updated: 2019-06-10

Package Version: 1.0.0.0

mikroSDK Library: 1.0.0.0

Category: Temperature & humidity

Downloaded: 4091 times

Not followed.

License: MIT license  

Thermo 11 Click is a Click board equipped with the sensor IC, which can digitize temperature measurements between -55°C and +150°C so that the temperature measurement data can be processed by the host MCU.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo 11 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo 11 click" changes.

Do you want to report abuse regarding "Thermo 11 click".

  • mikroSDK Library 2.0.0.0
  • Comments (0)
DOWNLOAD LINK RELATED COMPILER CONTAINS
mikroBasic PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroBasic PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroC PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for ARM
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for AVR
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for dsPIC30/33 & PIC24
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for FT90x
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc
mikroPascal PRO for PIC32
  • lib
  • src
  • exa
  • hlp
  • hex
  • sch
  • pcb
  • doc

mikroSDK Library Blog

Thermo 11 Click

Thermo 11 Click

Native view of the Thermo 11 Click board.

View full image
Thermo 11 Click

Thermo 11 Click

Front and back view of the Thermo 11 Click board.

View full image

Library Description

This library allows user to get ambient temperature value in the range from -256 to +255.9921875 Celsius degrees. The user also can perform the desired device configurations by using this library. The device control is allowed by using the I2C serial interface. For more details check documentation.

Key functions:

  • T_THERMO11_RETVAL thermo11_writeReg( uint8_t regAddr, uint16_t dataIn ) - This function writes a 16bit data to the desired register.
  • float thermo11_getTemp( uint8_t tempAddr ) - This function returns the temperature value converted to the Celsius degrees.
  • T_THERMO11_RETVAL thermo11_setTemp( uint8_t tempAddr, float tempValue ) - This function allows user to set the desired temperature register on the desired value.

Examples description

The application is composed of three sections :

  • System Initialization - Initializes peripherals and pins.
  • Application Initialization - Initializes I2C serial interface and performs a software reset command and device configurations.
  • Application Task - (code snippet) - Waits until data was ready and conversion cycle was done, and then reads the temperature and status data. The both data will be sent to the uart terminal with the limit status messages. Note : The temperature that can be measured or written to the registers is in range from -256 to 255.9921875 Celsius degrees.
void applicationTask()
{
    responseCheck = thermo11_getINT();
    while (responseCheck == _THERMO11_FLAG_IS_CLEARED)
    {
        responseCheck = thermo11_getINT();
    }

    temperature = thermo11_getTemp( _THERMO11_TEMPERATURE_REG );
    responseCheck = thermo11_checkStatus();
    
    FloatToStr( temperature, text );
    floatCut();
    mikrobus_logWrite( "* Temperature is ", _LOG_TEXT );
    mikrobus_logWrite( text, _LOG_TEXT );
    mikrobus_logWrite( logUnit, _LOG_LINE );
    
    if ((responseCheck & _THERMO11_HIGH_ALERT_FLAG) != _THERMO11_FLAG_IS_CLEARED)
    {
        mikrobus_logWrite( "* HIGH limit detection!", _LOG_LINE );
    }
    if ((responseCheck & _THERMO11_LOW_ALERT_FLAG) != _THERMO11_FLAG_IS_CLEARED)
    {
        mikrobus_logWrite( "* LOW limit detection!", _LOG_LINE );
    }
    mikrobus_logWrite( "********************************************", _LOG_LINE );
}

Additional Functions :

  • floatCut - Allows to real values be rounded on two decimal places.

Other mikroE Libraries used in the example:

  • Conversions
  • I2C
  • UART

Additional notes and informations

Depending on the development board you are using, you may need USB UART clickUSB UART 2 click or RS232 click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.

ALSO FROM THIS AUTHOR

Multi Stepper TB67S269 Click

0

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB67S269FTG, CLOCK-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and allows from full-step up to 1/32 steps resolution for less motor noise and smoother control. It has a wide operating voltage range of 10V to 47V with an output current capacity of 1.4A in addition to several built-in error detection circuits.

[Learn More]

LR 14 Click

0

LR 14 Click is a compact add-on board for low-power, long-range wireless communication in IoT networks. This board features the RAK3172, a Class A/B/C LoRaWAN 1.0.3-compliant module from RAKwireless Technology, featuring the STM32WLE5CC ARM Cortex-M4 32-bit chip. This board supports LoRaWAN and LoRa Point-to-Point communication modes and integrates multiple frequency bands for flexibility across various regions. Key features include UART, SPI, and I2C interfaces, a USB Type-C connector for power and configuration, and a rechargeable battery option for standalone operation.

[Learn More]

Light 4 Click

0

Light 4 Click is a compact add-on board designed for precise ambient light, UV index, and light flicker detection. This board features the TSL2585 sensor from ams OSRAM, which incorporates photopic, infrared (IR), and ultraviolet (UV) photodiodes to enable multiple concurrent sensing functions. The TSL2585 continuously monitors ambient light, calculates irradiance, and detects light flicker using optimized filters and dedicated IR and UV channels. It communicates with the host MCU via a standard I2C interface, includes interrupt-driven events for threshold-based alerts, and operates with 3.3V logic voltage.

[Learn More]