TOP Contributors

  1. MIKROE (2780 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139571 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57259 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43229 times)
  6. FT800 Library (42566 times)
  7. GSM click (29932 times)
  8. mikroSDK (28294 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.21

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 377 times

Not followed.

License: MIT license  

Accel Click is an accessory board in mikroBUS form factor. It features ADXL345 3-axis accelerometer module with ultra-low power and high resolution (13-bit) measurement.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel Click" changes.

Do you want to report abuse regarding "Accel Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Accel Click

Accel Click is an accessory board in mikroBUS form factor. It features ADXL345 3-axis accelerometer module with ultra-low power and high resolution (13-bit) measurement.

accel_click.png

Click Product page


Click library

  • Author : Jovan Stajkovic
  • Date : nov 2019.
  • Type : I2C/SPI type

Software Support

We provide a library for the Accel Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Accel Click driver.

Standard key functions :

  • accel_cfg_setup Config Object Initialization function.

    void accel_cfg_setup ( accel_cfg_t *cfg );
  • accel_init Initialization function.

    err_t accel_init ( accel_t *ctx, accel_cfg_t *cfg );
  • accel_default_cfg Click Default Configuration function.

    void accel_default_cfg ( accel_t *ctx );

Example key functions :

  • accel_read_x_axis Function reads X axis value from Accel.

    int16_t accel_read_x_axis ( accel_t *ctx );
  • accel_read_y_axis Function reads Y axis value from Accel.

    int16_t accel_read_y_axis ( accel_t *ctx );
  • accel_read_z_axis Function reads Z axis value from Accel.

    int16_t accel_read_z_axis ( accel_t *ctx );

Examples Description

This example demonstrates the use of Accel Click board by reading and displaying the accelerometer data (X, Y, and Z axis).

The demo application is composed of two sections :

Application Init

Initializes SPI/I2C driver and settings data read format, power mode, FIFO control and baud rate ( 100Hz default ).

void application_init ( void )
{
    log_cfg_t log_cfg;
    accel_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    accel_cfg_setup( &cfg );
    ACCEL_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    accel_init( &accel, &cfg );

    accel_generic_read( &accel, ACCEL_REG_DEVID, &tmp, 1 );

    if ( tmp == ACCEL_DEVID )
    {
        log_printf( &logger, "---- Comunication OK!!! ----\r\n" );
    }
    else
    {
        log_printf( &logger, "---- Comunication ERROR!!! ----\r\n" );
        for ( ; ; );
    }
    accel_default_cfg ( &accel );
}

Application Task

Reads X, Y and Z axis and logs on usbuart every 100 ms.

void application_task ( void )
{
    val_x = accel_read_x_axis( &accel );
    log_printf( &logger, "Axis X : %.3f g\r\n", val_x / ACCEL_DATA_RES_LSB_PER_G );

    val_y = accel_read_y_axis( &accel );
    log_printf( &logger, "Axis Y : %.3f g\r\n", val_y / ACCEL_DATA_RES_LSB_PER_G );

    val_z = accel_read_z_axis( &accel );
    log_printf( &logger, "Axis Z : %.3f g\r\n", val_z / ACCEL_DATA_RES_LSB_PER_G );

    log_printf( &logger, "-------------------\r\n" );
    Delay_ms ( 100 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

EEPROM 3 click

2

EEPROM 3 click carries Atmel’s AT24CM02 DIP-8 socket EEPROM chip with 256 KB of memory. The board communicates with the target MCU through the mikroBUS I2C interface (SCL, SDA pins) with speeds up to 1 MHz. The chip allows for an entire page of data to be written in a single cycle. The board is designed to use either a 3.3V or a 5V power supply.

[Learn More]

CO 2 Click

0

CO 2 Click is a very accurate, carbon-monoxide-gas-sensor Click board™, equipped with the SPEC amperometric, 3SP CO 1000 gas sensor which electrochemically reacts with the carbon monoxide (CO).

[Learn More]

FT Click

0

FT Click is a compact smart transceiver add-on board that helps you add a Free Topology (FT) interface to any host board with the mikroBUS™ socket. Leveraging FT, the most reliable and easiest-to-scale wired communications media, FT Click lets you network sensors and devices to create IoT solutions for automation and control networks that are easier to develop, integrate and install. This Click board™ supports full communication stacks for LON® and BACnet FT, as well as FTMQ (MQTT like messaging format) on board to simplify integration of BACnet, LON or custom IoT networks over twisted pair wire. FT Click is ideal for markets including smart buildings, cities, machines, agriculture, manufacturing, transportation and many more where wireless communications do not provide the required reliability and scale.

[Learn More]