TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142023 times)
  2. FAT32 Library (75253 times)
  3. Network Ethernet Library (59472 times)
  4. USB Device Library (49492 times)
  5. Network WiFi Library (45268 times)
  6. FT800 Library (44880 times)
  7. GSM click (31415 times)
  8. mikroSDK (30402 times)
  9. microSD click (27778 times)
  10. PID Library (27614 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

ADC Click

Rating:

1

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: ADC

Downloaded: 822 times

Not followed.

License: MIT license  

ADC Click carries the MCP3204 12-bit Analog-to-Digital converter. The Click is designed to run on 3.3V by default. Place PWR SEL SMD jumper to 5V position if used with 5V systems.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "ADC Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "ADC Click" changes.

Do you want to report abuse regarding "ADC Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


ADC Click

ADC Click carries the MCP3204 12-bit Analog-to-Digital converter. The Click is designed to run on 3.3V by default. Place PWR SEL SMD jumper to 5V position if used with 5V systems.

adc_click.png

Click Product page


Click library

  • Author : Nemanja Medakovic
  • Date : Nov 2019.
  • Type : SPI type

Software Support

We provide a library for the Adc Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Adc Click driver.

Standard key functions :

  • Configuration Object Setup function.

    void adc_cfg_setup( adc_cfg_t *cfg );

  • Click Initialization function.

    adc_err_t adc_init( adc_t ctx, adc_cfg_t cfg );

Example key functions :

  • Get Single-Ended Channel function.

    uint16_t adc_get_single_ended_ch( adc_t *ctx, adc_ch_t channel );

  • Get Pseudo-Differential Pair function.

    uint16_t adc_get_differential_ch( adc_t *ctx, adc_ch_t channel );

Examples Description

This example demonstrates the use of ADC Click board. The all channels can be configured as single-ended or pseudo-differential pair.

The demo application is composed of two sections :

Application Init

Initializes SPI driver, performs the reference voltage selection and initializes UART console for results logging.


void application_init( void )
{
    log_cfg_t log_cfg;
    adc_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    adc_cfg_setup( &cfg );
    ADC_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    adc_init( &adc, &cfg );
}

Application Task

Reads voltage level of channels 0 and 1 in the both configurations, single-ended and pseudo-differential pair, every 1 second. All channels results will be calculated to millivolts [mV].


void application_task( void )
{
    adc_get_single_ended_ch( &adc, ADC_CH0_OR_CH01 );
    adc_get_single_ended_ch( &adc, ADC_CH1_OR_CH10 );
    adc_get_single_ended_ch( &adc, ADC_CH2_OR_CH23 );
    adc_get_single_ended_ch( &adc, ADC_CH3_OR_CH32 );
    adc_get_differential_ch( &adc, ADC_CH0_OR_CH01 );

    log_printf( &logger, "* CH0 = %u mV\r\n", adc.ch0 );
    log_printf( &logger, "* CH1 = %u mV\r\n", adc.ch1 );
    log_printf( &logger, "* CH2 = %u mV\r\n", adc.ch2 );
    log_printf( &logger, "* CH3 = %u mV\r\n", adc.ch3 );
    log_printf( &logger, "* CH0 - CH1 = %d mV\r\n", adc.ch01 );
    log_printf( &logger, "-----------------------------\r\n" );

    Delay_ms ( 1000 );
}

Note

In single-ended mode the all channels must be in the range from Vss (GND) to Vref (3V3 by default). In pseudo-differential mode the IN- channel must be in the range from (Vss - 100mV) to (Vss + 100mV). The IN+ channel must be in the range from IN- to (Vref + IN-). If any of conditions are not fullfilled, the device will return 0 or Vref voltage level, and measurements are not valid.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Adc

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

IR Grid 4 Click

0

IR Grid 4 Click is a compact add-on board for high-precision, non-contact temperature measurement and thermal imaging. This board is based on the MLX90641, a fully calibrated thermal IR array from Melexis. It captures temperature data across a 16x12 matrix (192 pixels) and accurately measures temperatures from -40°C to +300°C with a typical accuracy of 1°C. The board supports the innovative 'Click Snap' feature, allowing the sensor area to be detached for flexible positioning.

[Learn More]

M-Bus Master Click

0

The M-Bus Master is a Click board™ is complete solution for a master node in M-Bus networks.

[Learn More]

Spectral 2 click

5

Spectral 2 click is a multispectral color sensing device, which uses the state-of-the-art sensor IC for a very accurate color sensing.

[Learn More]