We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.25
mikroSDK Library: 2.0.0.0
Category: LED matrix
Downloaded: 490 times
Not followed.
License: MIT license
16x9 Click is an array of 144 LEDs, driven by a single IC with relatively low pin count (28).
Do you want to subscribe in order to receive notifications regarding "16x9 G Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "16x9 G Click" changes.
Do you want to report abuse regarding "16x9 G Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3109_16x9_g_click.zip [580.42KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
16x9 Click is an array of 144 LEDs, driven by a single IC with relatively low pin count (28).
We provide a library for the 16x9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for 16x9 Click driver.
Config Object Initialization function.
void c16x9_cfg_setup ( c16x9_cfg_t *cfg );
Initialization function.
C16X9_RETVAL c16x9_init ( c16x9_t ctx, c16x9_cfg_t cfg );
Draw rectangle.
void c16x9_draw_rectangle( c16x9_t ctx, c16x9_rectangle_t rectangle );
Image display function.
void c16x9_display_image ( c16x9_t ctx, c16x9_image_t image );
Functions for draw point.
void c16x9_draw_point ( c16x9_t ctx, c16x9_point_t point );
Demo application is used to shows basic controls 16x9 Click.
The demo application is composed of two sections :
Configuring clicks and log objects. Set basic images and characters to be drawn on the screen.
void application_init ( void )
{
log_cfg_t log_cfg;
c16x9_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, "---- Application Init ----" );
// Click initialization.
c16x9_cfg_setup( &cfg );
C16X9_MAP_MIKROBUS( cfg, MIKROBUS_1 );
c16x9_init( &c16x9, &cfg );
// Image ON
image_on.buf[ 0 ] = 0x0000;
image_on.buf[ 1 ] = 0xC630;
image_on.buf[ 2 ] = 0x6318;
image_on.buf[ 3 ] = 0x318C;
image_on.buf[ 4 ] = 0x18C6;
image_on.buf[ 5 ] = 0x318C;
image_on.buf[ 6 ] = 0x6318;
image_on.buf[ 7 ] = 0xC630;
image_on.buf[ 8 ] = 0x0000;
image_on.frame = C16X9_FRAME_1;
image_on.pwm = 250;
// Image OFF
image_off.buf[ 0 ] = 0xFFFF;
image_off.buf[ 1 ] = 0x39CF;
image_off.buf[ 2 ] = 0x9CE7;
image_off.buf[ 3 ] = 0xCE73;
image_off.buf[ 4 ] = 0xE739;
image_off.buf[ 5 ] = 0xCE73;
image_off.buf[ 6 ] = 0x9CE7;
image_off.buf[ 7 ] = 0x39CF;
image_off.buf[ 8 ] = 0xFFFF;
image_off.frame = C16X9_FRAME_1;
image_off.pwm = 250;
// Char
data_char.character = 'G';
data_char.frame = C16X9_FRAME_1;
data_char.pwm = 250;
// Rectangle
rectangle.x = 1;
rectangle.y = 4;
rectangle.width = 6;
rectangle.height = 4;
rectangle.frame = C16X9_FRAME_1;
rectangle.pwm = 250;
}
Display character, image and rectangle every 1 second.
void application_task ( void )
{
// Task implementation.
c16x9_display_refresh( &c16x9 );
c16x9_display_byte( &c16x9, &data_char );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
c16x9_display_refresh( &c16x9 );
c16x9_display_image( &c16x9, &image_on );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
c16x9_display_refresh( &c16x9 );
c16x9_display_image( &c16x9, &image_off );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
c16x9_display_refresh( &c16x9 );
c16x9_draw_rectangle( &c16x9, &rectangle );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.