We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.17
mikroSDK Library: 2.0.0.0
Category: Digital potentiometer
Downloaded: 227 times
Not followed.
License: MIT license
DIGI POT 5 Click is a digitally controlled quad potentiometer, with the resistance of 10KΩ. It has an 8bit wiper step resolution, which allows the wiper to take 257 different discrete positions (across 256 internal resistors). The digital wiper position can be controlled via the SPI interface.
Do you want to subscribe in order to receive notifications regarding "DIGI POT 5 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "DIGI POT 5 Click" changes.
Do you want to report abuse regarding "DIGI POT 5 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3124_digi_pot_5_click.zip [579.87KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
DIGI POT 5 Click is a digitally controlled quad potentiometer, with the resistance of 10KΩ. It has an 8bit wiper step resolution, which allows the wiper to take 257 different discrete positions (across 256 internal resistors). The digital wiper position can be controlled via the SPI interface.
We provide a library for the DigiPot5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for DIGI POT 5 Click driver.
Configuration Object Setup function.
void digipot5_cfg_setup( digipot5_cfg_t *cfg );
Click Initialization function.
digipot5_err_t digipot5_init( digipot5_t ctx, digipot5_cfg_t cfg );
Click Default Configuration function.
void digipot5_default_cfg( digipot5_t *ctx );
Generic Write function.
digipot5_err_t digipot5_generic_write( digipot5_t *ctx, digipot5_reg_t reg_addr, uint16_t data_in );
Generic Read function.
digipot5_err_t digipot5_generic_read( digipot5_t ctx, digipot5_reg_t reg_addr, uint16_t data_out );
Increment Wiper function.
digipot5_reg_t digipot5_increment_wiper( digipot5_t *ctx, digipot5_reg_t reg_addr );
This example demonstrates the use of the DIGI POT 5 Click board.
The demo application is composed of two sections :
Initializes all necessary peripherals and pins used for the DIGI POT 5 Click. Also allows the device to be reset and configured to enable all wipers (4). UART console module will be initialized also in this function.
void application_init( void )
{
digipot5_cfg_t digipot5_cfg;
log_cfg_t console_cfg;
// Click initialization.
digipot5_cfg_setup( &digipot5_cfg );
DIGIPOT5_MAP_MIKROBUS( digipot5_cfg, MIKROBUS_1 );
digipot5_init( &digipot5, &digipot5_cfg );
digipot5_reset( &digipot5 );
digipot5_default_cfg( &digipot5 );
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( console_cfg );
log_init( &console, &console_cfg );
log_write( &console, "*** DIGI POT 5 Initialization Done ***",
LOG_FORMAT_LINE );
log_write( &console, "****************************************",
LOG_FORMAT_LINE );
}
Demonstrates the use of Click driver functions by performing a control of the all wipers positions. By checking the uart console, user can be informed about the all current wipers positions.
void application_task( void )
{
log_write( &console, "* Setting wiper 0 to zero scale.", LOG_FORMAT_LINE );
digipot5_generic_write( &digipot5, DIGIPOT5_REG_WIPER0_VOL,
DIGIPOT5_RES_ZEROSCALE );
log_write( &console, "* Setting wiper 1 to 3k Ohm.", LOG_FORMAT_LINE );
digipot5_generic_write( &digipot5, DIGIPOT5_REG_WIPER1_VOL,
DIGIPOT5_RES_3KOHM );
log_write( &console, "* Setting wiper 2 to half scale (5k Ohm).",
LOG_FORMAT_LINE );
digipot5_generic_write( &digipot5, DIGIPOT5_REG_WIPER2_VOL,
DIGIPOT5_RES_5KOHM_HALFSCALE );
log_write( &console, "* Setting wiper 3 to full scale (10k Ohm).",
LOG_FORMAT_LINE );
digipot5_generic_write( &digipot5, DIGIPOT5_REG_WIPER3_VOL,
DIGIPOT5_RES_10KOHM_FULLSCALE );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_write( &console, "* Decrementing wiper 3 by 5 steps.",
LOG_FORMAT_LINE );
for ( i = 0; i < 5; i++ )
{
digipot5_decrement_wiper( &digipot5, DIGIPOT5_REG_WIPER3_VOL );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_write( &console, "* Incrementing wiper 0 by 10 steps.",
LOG_FORMAT_LINE );
for ( i = 0; i < 10; i++ )
{
digipot5_increment_wiper( &digipot5, DIGIPOT5_REG_WIPER0_VOL );
}
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_write( &console, "* Setting wiper 0 to 2k Ohm.", LOG_FORMAT_LINE );
digipot5_generic_write( &digipot5, DIGIPOT5_REG_WIPER0_VOL,
DIGIPOT5_RES_2KOHM );
log_write( &console, "* Setting wiper 1 to 2k Ohm.", LOG_FORMAT_LINE );
digipot5_generic_write( &digipot5, DIGIPOT5_REG_WIPER1_VOL,
DIGIPOT5_RES_2KOHM );
log_write( &console, "* Setting wiper 2 to 2k Ohm.", LOG_FORMAT_LINE );
digipot5_generic_write( &digipot5, DIGIPOT5_REG_WIPER2_VOL,
DIGIPOT5_RES_2KOHM );
log_write( &console, "* Setting wiper 3 to 2k Ohm.", LOG_FORMAT_LINE );
digipot5_generic_write( &digipot5, DIGIPOT5_REG_WIPER3_VOL,
DIGIPOT5_RES_2KOHM );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
Delay_ms ( 1000 );
log_write( &console, "****************************************",
LOG_FORMAT_LINE );
}
Increment/decrement command can be issued only to volatile wiper locations.
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.