TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141249 times)
  2. FAT32 Library (74083 times)
  3. Network Ethernet Library (58711 times)
  4. USB Device Library (48814 times)
  5. Network WiFi Library (44523 times)
  6. FT800 Library (44072 times)
  7. GSM click (30803 times)
  8. mikroSDK (29648 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Proximity 10 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Proximity

Downloaded: 340 times

Not followed.

License: MIT license  

Proximity 10 Click is a versatile proximity detection device on a Click board™. It can detect a foreign object distanced up to 20cm.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Proximity 10 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Proximity 10 Click" changes.

Do you want to report abuse regarding "Proximity 10 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Proximity 10 Click

Proximity 10 Click is a versatile proximity detection device on a Click board™. It can detect a foreign object distanced up to 20cm.

proximity10_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Proximity10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Proximity10 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void proximity10_cfg_setup ( proximity10_cfg_t *cfg );

  • Initialization function.

    PROXIMITY10_RETVAL proximity10_init ( proximity10_t ctx, proximity10_cfg_t cfg );

  • Click Default Configuration function.

    void proximity10_default_cfg ( proximity10_t *ctx );

Example key functions :

  • This function checks the desired interrupt flags status.

    uint8_t proximity10_check_int_status ( proximity10_t *ctx, uint8_t bit_mask, uint8_t clear_en );

  • This function allows user to execute a desired command and checks the response.

    uint8_t proximity10_send_command ( proximity10_t *ctx, uint8_t prox_command );

  • This function sets the selected parameter to the desired value, and checks the response.

    uint8_t proximity10_param_set ( proximity10_t *ctx, uint8_t param_addr, uint8_t param_value );

Examples Description

This application enables proximity sensor to detect objects from distance up to 20cm.

The demo application is composed of two sections :

Application Init

Initializes I2C serial interface and performs a device wake up, reset and all necessary configurations. The device will wake up and performs measurements every 10 milliseconds.


void application_init ( void )
{
    log_cfg_t log_cfg;
    proximity10_cfg_t cfg;

    uint8_t w_temp;
    uint8_t cmd_resp;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    proximity10_cfg_setup( &cfg );
    PROXIMITY10_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    proximity10_init( &proximity10, &cfg );

    Delay_ms ( 500 );

    w_temp = PROXIMITY10_HW_KEY;
    proximity10_generic_write( &proximity10, PROXIMITY10_HW_KEY_REG, &w_temp, 1 );

    cmd_resp = proximity10_send_command( &proximity10, PROXIMITY10_NOP_CMD );
    check_response( cmd_resp );
    cmd_resp = proximity10_send_command( &proximity10, PROXIMITY10_RESET_CMD );
    check_response( cmd_resp );
    Delay_ms ( 200 );

    cmd_resp = proximity10_param_set( &proximity10, PROXIMITY10_CHLIST_PARAM, PROXIMITY10_EN_AUX | PROXIMITY10_EN_ALS_IR | PROXIMITY10_EN_ALS_VIS | PROXIMITY10_EN_PS1 );
    check_response( cmd_resp );
    cmd_resp = proximity10_param_set( &proximity10, PROXIMITY10_PSLED12_SEL_PARAM, PROXIMITY10_LED1_DRIVE_EN );
    check_response( cmd_resp );
    cmd_resp = proximity10_param_set( &proximity10, PROXIMITY10_PS_ADC_MISC_PARAM, PROXIMITY10_NORMAL_SIGNAL_RANGE | PROXIMITY10_NORMAL_PROX_MEAS_MODE );
    check_response( cmd_resp );
    cmd_resp = proximity10_param_set( &proximity10, PROXIMITY10_PS_ADC_GAIN_PARAM, PROXIMITY10_ADC_CLOCK_DIV_4 );
    check_response( cmd_resp );

    proximity10_default_cfg ( &proximity10 );

    cmd_resp = proximity10_send_command( &proximity10, PROXIMITY10_PS_AUTO_CMD );
    check_response( cmd_resp );

    //Sound_Init( &GPIOE_ODR, 14 ); //??

    log_printf( &logger, "** Proximity 10 is initialized **\r\n" );
    log_printf( &logger, "**************************************\r\n" );
    Delay_ms ( 500 );
}

Application Task

Reads the proximity PS1 data value and sends result to the uart terminal. If measured proximity value is greater than selected proximity threshold value, the interrupt will be generated and the message will be showed on the uart terminal. When interrupt is generated the Sound function will make an alarm sound with determined duration depending on the > detected proximity value, how much is object away or close from the sensor.


void application_task ( void )
{
    //  Task implementation.

    uint32_t proximity;
    uint8_t temp_read[ 2 ];
    uint8_t int_status;
    uint16_t alarm_dur;

    proximity10_generic_read( &proximity10, PROXIMITY10_PS1_DATA_REG, &temp_read, 2 );
    proximity = temp_read[ 1 ];
    proximity <<= 8;
    proximity |= temp_read[ 0 ];

    log_printf( &logger, "** Proximity PS1 : %u \r\n", proximity );

    int_status = proximity10_check_int_status( &proximity10, PROXIMITY10_PS1_INT_FLAG, PROXIMITY10_INT_CLEAR_DIS );

    if ( int_status == PROXIMITY10_PS1_INT_FLAG )
    {
        log_printf( &logger, "** Object is detected **\r\n" );

        alarm_dur = proximity / 100;
        alarm_dur = alarm_dur + 35;
        alarm_dur = ( float )( alarm_dur * 0.30928 );
        alarm_dur = 180 - alarm_dur;

       // Sound_Play( 1400, alarm_dur );  //??
        Delay_ms ( 100 );
    }
    else
    {
        Delay_ms ( 200 );
    }
    log_printf( &logger, "**************************************\r\n" );
}  

Note

Additional Functions :

  • checkResponse - Sends an error code message to the uart terminal if error code is detected in the response.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Proximity10

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Multi Stepper TB62261 Click

0

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB62261FTG, a PHASE-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and full-, half-, and quarter-step operation for less motor noise and smoother control. It has a wide operating voltage range of 10V to 38V with an output current capacity of 1.2A in addition to several built-in error detection circuits.

[Learn More]

Bluetooth Click

0

With the range up to a 100m and low power consumption, Bluetooth Click is a great solution if you are looking for a simple way to integrate Bluetooth 2.1 communication to your device. It features the RN-41 low power, class 1 Bluetooth radio module. Bluetooth Click communicates with the target board MCU through UART interface and is designed to run on 3.3V power supply only.

[Learn More]

DC Motor 12 Click

0

DC Motor 12 Click is a compact add-on board with a brushed DC motor driver. This board features the TB9054FTG, a PWM-type, dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. The TB9054FTG is rated for an operating voltage range from 4.5V to 28V, with the motor controlled directly through a PWM signal or SPI serial interface. In addition, this driver allows a dual configuration with two motors with 5A current ratings per channel or one 10A channel drive in a Parallel mode of operation. It also has complete diagnostic and protection capabilities supporting robust and reliable operation.

[Learn More]