TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43220 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Proximity 10 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Proximity

Downloaded: 223 times

Not followed.

License: MIT license  

Proximity 10 Click is a versatile proximity detection device on a Click board™. It can detect a foreign object distanced up to 20cm.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Proximity 10 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Proximity 10 Click" changes.

Do you want to report abuse regarding "Proximity 10 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Proximity 10 Click

Proximity 10 Click is a versatile proximity detection device on a Click board™. It can detect a foreign object distanced up to 20cm.

proximity10_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : jan 2020.
  • Type : I2C type

Software Support

We provide a library for the Proximity10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Proximity10 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void proximity10_cfg_setup ( proximity10_cfg_t *cfg );

  • Initialization function.

    PROXIMITY10_RETVAL proximity10_init ( proximity10_t ctx, proximity10_cfg_t cfg );

  • Click Default Configuration function.

    void proximity10_default_cfg ( proximity10_t *ctx );

Example key functions :

  • This function checks the desired interrupt flags status.

    uint8_t proximity10_check_int_status ( proximity10_t *ctx, uint8_t bit_mask, uint8_t clear_en );

  • This function allows user to execute a desired command and checks the response.

    uint8_t proximity10_send_command ( proximity10_t *ctx, uint8_t prox_command );

  • This function sets the selected parameter to the desired value, and checks the response.

    uint8_t proximity10_param_set ( proximity10_t *ctx, uint8_t param_addr, uint8_t param_value );

Examples Description

This application enables proximity sensor to detect objects from distance up to 20cm.

The demo application is composed of two sections :

Application Init

Initializes I2C serial interface and performs a device wake up, reset and all necessary configurations. The device will wake up and performs measurements every 10 milliseconds.


void application_init ( void )
{
    log_cfg_t log_cfg;
    proximity10_cfg_t cfg;

    uint8_t w_temp;
    uint8_t cmd_resp;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    proximity10_cfg_setup( &cfg );
    PROXIMITY10_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    proximity10_init( &proximity10, &cfg );

    Delay_ms ( 500 );

    w_temp = PROXIMITY10_HW_KEY;
    proximity10_generic_write( &proximity10, PROXIMITY10_HW_KEY_REG, &w_temp, 1 );

    cmd_resp = proximity10_send_command( &proximity10, PROXIMITY10_NOP_CMD );
    check_response( cmd_resp );
    cmd_resp = proximity10_send_command( &proximity10, PROXIMITY10_RESET_CMD );
    check_response( cmd_resp );
    Delay_ms ( 200 );

    cmd_resp = proximity10_param_set( &proximity10, PROXIMITY10_CHLIST_PARAM, PROXIMITY10_EN_AUX | PROXIMITY10_EN_ALS_IR | PROXIMITY10_EN_ALS_VIS | PROXIMITY10_EN_PS1 );
    check_response( cmd_resp );
    cmd_resp = proximity10_param_set( &proximity10, PROXIMITY10_PSLED12_SEL_PARAM, PROXIMITY10_LED1_DRIVE_EN );
    check_response( cmd_resp );
    cmd_resp = proximity10_param_set( &proximity10, PROXIMITY10_PS_ADC_MISC_PARAM, PROXIMITY10_NORMAL_SIGNAL_RANGE | PROXIMITY10_NORMAL_PROX_MEAS_MODE );
    check_response( cmd_resp );
    cmd_resp = proximity10_param_set( &proximity10, PROXIMITY10_PS_ADC_GAIN_PARAM, PROXIMITY10_ADC_CLOCK_DIV_4 );
    check_response( cmd_resp );

    proximity10_default_cfg ( &proximity10 );

    cmd_resp = proximity10_send_command( &proximity10, PROXIMITY10_PS_AUTO_CMD );
    check_response( cmd_resp );

    //Sound_Init( &GPIOE_ODR, 14 ); //??

    log_printf( &logger, "** Proximity 10 is initialized **\r\n" );
    log_printf( &logger, "**************************************\r\n" );
    Delay_ms ( 500 );
}

Application Task

Reads the proximity PS1 data value and sends result to the uart terminal. If measured proximity value is greater than selected proximity threshold value, the interrupt will be generated and the message will be showed on the uart terminal. When interrupt is generated the Sound function will make an alarm sound with determined duration depending on the > detected proximity value, how much is object away or close from the sensor.


void application_task ( void )
{
    //  Task implementation.

    uint32_t proximity;
    uint8_t temp_read[ 2 ];
    uint8_t int_status;
    uint16_t alarm_dur;

    proximity10_generic_read( &proximity10, PROXIMITY10_PS1_DATA_REG, &temp_read, 2 );
    proximity = temp_read[ 1 ];
    proximity <<= 8;
    proximity |= temp_read[ 0 ];

    log_printf( &logger, "** Proximity PS1 : %u \r\n", proximity );

    int_status = proximity10_check_int_status( &proximity10, PROXIMITY10_PS1_INT_FLAG, PROXIMITY10_INT_CLEAR_DIS );

    if ( int_status == PROXIMITY10_PS1_INT_FLAG )
    {
        log_printf( &logger, "** Object is detected **\r\n" );

        alarm_dur = proximity / 100;
        alarm_dur = alarm_dur + 35;
        alarm_dur = ( float )( alarm_dur * 0.30928 );
        alarm_dur = 180 - alarm_dur;

       // Sound_Play( 1400, alarm_dur );  //??
        Delay_ms ( 100 );
    }
    else
    {
        Delay_ms ( 200 );
    }
    log_printf( &logger, "**************************************\r\n" );
}  

Note

Additional Functions :

  • checkResponse - Sends an error code message to the uart terminal if error code is detected in the response.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Proximity10

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

RN4871 Click

0

RN4871 Click carries the RN4871 Bluetooth® 4.2 low energy module from Microchip.The Click is designed to run on a 3.3V power supply. It uses ASCII Command Interface over UART for communication with target microcontroller, with additional functionality provided by the following pins on the mikroBUS™ line: RST, CS, and INT.

[Learn More]

Terminal 2 Click

0

Terminal 2 Click is an adapter Click board™ used as a mikroBUS™ socket expansion board. It provides an easy and elegant solution for adding the external connection capability to the Click board™, plugged on a mikroBUS™ socket. Featuring two 9-position 2.54mm pitch terminal blocks makes it an easy way to expand the development system's connectivity with the mikroBUS™ socket while keeping the bus free to use with any Click board™.

[Learn More]

Buck 19 Click

0

Buck 19 Click is a compact add-on board that steps down the voltage from its input (supply) to its output (load). This board features the STPD01, a programmable synchronous buck converter from STMicroelectronics, providing power supply in applications following USB power delivery specifications. The STPD01 provides the desired voltage levels required by USB power delivery systems (USB PD 3.0) via I2C serial interface up to 60W output power, more precisely voltages in the range of 3V to 20V with a step of 20mV minimum, and currents from 0.1A to 3A with a minimum in steps of 50mA. It also offers advanced protection features such as overvoltage, overcurrent, and overtemperature detections.

[Learn More]