TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141825 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59317 times)
  4. USB Device Library (49308 times)
  5. Network WiFi Library (45108 times)
  6. FT800 Library (44676 times)
  7. GSM click (31287 times)
  8. mikroSDK (30215 times)
  9. microSD click (27664 times)
  10. PID Library (27564 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LightRanger 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 501 times

Not followed.

License: MIT license  

Light Ranger 4 Click is an accurate distance measurement Click board based on a ToF (Time of Flight) measurement principle.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LightRanger 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LightRanger 4 Click" changes.

Do you want to report abuse regarding "LightRanger 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Light Ranger 4 Click

Light Ranger 4 Click is an accurate distance measurement Click board based on a ToF (Time of Flight) measurement principle.

lightranger4_click.png

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : okt 2019.
  • Type : I2C type

Software Support

We provide a library for the LightRanger4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for LightRanger4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void lightranger4_cfg_setup ( lightranger4_cfg_t *cfg );

  • Initialization function.

    LIGHTRANGER4_RETVAL lightranger4_init ( lightranger4_t ctx, lightranger4_cfg_t cfg );

  • Click Default Configuration function.

    void lightranger4_default_cfg ( lightranger4_t *ctx );

Example key functions :

  • Function that checks whether the new data is ready for reading

    uint8_t lightranger4_new_data_ready ( lightranger4_t *ctx );

  • Function reads distance of the object in front of the sensor

    uint16_t lightranger4_get_distance ( lightranger4_t *ctx );

  • Function for starts power ON procedure

    void lightranger4_power_on ( lightranger4_t *ctx );

Examples Description

Demo application is used to shows basic controls LightRanger 4 Click

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration, adjusts the LONG mode (distance measurement up to 4 meters), sets the time budget and start measurement with the adjustment of inter measurements period.

void application_init ( void )
{
    log_cfg_t log_cfg;
    lightranger4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    lightranger4_cfg_setup( &cfg );
    LIGHTRANGER4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    lightranger4_init( &lightranger4, &cfg );

    lightranger4_power_on( &lightranger4 );
    log_info( &logger, "--- Wait until the configuration of the chip is completed ---" );

    lightranger4_default_cfg( &lightranger4 );
    lightranger4_set_distance_mode( &lightranger4, LR4_DISTANCE_MODE_LONG );
    lightranger4_set_measurement_timing_budget( &lightranger4, 1000 );
    lightranger4_start_measurement( &lightranger4, 20 );

    log_info( &logger, "--- Sensor start measurement ---" );
    Delay_100ms( );
}

Application Task

Reads the distance of the object in front of the sensor and logs distance to USBUART every 500 ms.

void application_task ( void )
{
    uint16_t distance;
    uint8_t m_status;

    //  Task implementation.

    while ( lightranger4_new_data_ready( &lightranger4 ) != 0 )
    {
        Delay_1ms();
    }

    distance = lightranger4_get_distance( &lightranger4 );
    log_printf( &logger, "** Distance: %d mm \r\n", distance );

    m_status = lightranger4_get_range_status( &lightranger4 );
    switch ( m_status )
    {
        case LR4_MRESP_SIGNAL_FAIL:
        {
            log_info( &logger, "Signal fail." );
            break;
        }
        case LR4_MRESP_PHASE_OUT_OF_VALID_LIMITS:
        {
            log_info( &logger, "Phase out of valid limits" );
            break;
        }
        case LR4_MRESP_SIGMA_FAIL:
        {
            log_info( &logger, "Sigma Fail. " );
            break;
        }
        case LR4_MRESP_WRAP_TARGET_FAIL:
        {
            log_info( &logger, "Wrap target fail." );
            break;
        }
        case LR4_MRESP_MINIMUM_DETECTION_THRESHOLD:
        {
            log_info( &logger, "Target is below minimum detection threshold. " );
            break;
        }
    }
    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LightRanger4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Ambient 4 click

5

Ambient 4 click is a light, intensity-sensing and measuring Click boardâ„¢, which features an accurate, light-intensity sensor labeled as BH1721FVC, made by ROHM corporation.

[Learn More]

Pressure 20 Click

0

Pressure 20 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the ICP-20100, a high-accuracy digital barometric pressure and temperature sensor from TDK InvenSense. The ICP-20100 is based on MEMS capacitive technology with ultra-low noise, low power consumption, and temperature stability alongside programmable output: all-pressure, all-temperature, or pressure and temperature output. It converts output data into a 20-bit digital value and sends the information via a configurable host interface that supports SPI and I2C serial communications. It measures pressure from 30kPa up to 110kPa with an accuracy of ±20Pa over a wide operating temperature range.

[Learn More]

BLE 12 Click

0

BLE 12 Click is a compact add-on board that provides BT/BLE connectivity for any embedded application. This board features the BM832A, a powerful and highly flexible, ultra low power Bluetooth Low Energy (BLE) module from Fanstel. Based on the Nordic nRF52 SoC, the BM832A supports Bluetooth 5.0 Low-Energy (BLE) connectivity while delivering RF range and performance, debugging and enhanced security features, and low power consumption. It also comes with an ARM Cortex™ M4(F) MCU up to 192kB flash and 24kB RAM, embedded 2.4GHz multi-protocol transceiver, and an integrated PCB trace antenna. This Click board™ is suitable for low-cost Bluetooth low energy applications such as building automation and sensor networks, portable medical, connected home, and more.

[Learn More]