TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139250 times)
  2. FAT32 Library (71747 times)
  3. Network Ethernet Library (57120 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28074 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MAGNETO 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 324 times

Not followed.

License: MIT license  

Magneto 4 Click is a high-resolution magnetic encoder Click board™ which allows contactless motion sensing down to 0.5µm.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MAGNETO 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MAGNETO 4 Click" changes.

Do you want to report abuse regarding "MAGNETO 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MAGNETO 4 Click

Magneto 4 Click is a high-resolution magnetic encoder Click board™ which allows contactless motion sensing down to 0.5µm.

magneto4_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Nov 2019.
  • Type : SPI type

Software Support

We provide a library for the Magneto4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Magneto4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void magneto4_cfg_setup ( magneto4_cfg_t *cfg );

  • Initialization function.

    MAGNETO4_RETVAL magneto4_init ( magneto4_t ctx, magneto4_cfg_t cfg );

  • Click Default Configuration function.

    void magneto4_default_cfg ( magneto4_t *ctx );

Example key functions :

  • Get Magnetic measurement status

    uint8_t magneto4_get_magnetic_status ( magneto4_t ctx, mag_status_t mag_status );

  • Encoder position

    void magneto4_get_encoder_position ( magneto4_t *ctx );

  • Encoder direction

    uint8_t magneto4_get_encoder_direction ( magneto4_t ctx, mag_status_t mag_status );

Examples Description

Reads and logs magnetic field strength values if magnetic field strength values bigger than 3000, start magnetic linear position mode,
when moving the sensor from left to right the position for 1 step is reduced.

The demo application is composed of two sections :

Application Init

Initializes Driver init and sets start encoder position on the zero. Reads and logs magnetic field strength values. For starting an encoder, it is necessary that the magnetic field strength is greater than 3000.


void application_init ( void )
{
    log_cfg_t log_cfg;
    magneto4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    magneto4_cfg_setup( &cfg );
    MAGNETO4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    magneto4_init( &magneto4, &cfg );

    magneto4_default_cfg ( &magneto4 );

    log_printf( &logger, " --- Please, bring the magnet close ---\r\n" );

    while ( magnetic_field < MAGNETO4_MAX_MAGNETIC_FIELD_VALUE )
    {
        magnetic_field = magneto4_get_magnetic_field( &magneto4 );
        log_printf( &logger, " Magnetic field strength : %d\r\n", magnetic_field );
        Delay_ms ( 1000 );
    }

    Delay_ms ( 1000 );
    Delay_ms ( 500 );
    log_printf( &logger, " --- Magnetic Linear Position ---\r\n" );
}

Application Task

When moving the sensor from left to right, one step is added and when moving from right to left, the position for 1 step is reduced.


void application_task ( void )
{
    //  Task implementation.

    magneto4_get_encoder_position( &magneto4 );

    enc_position = magneto4.encoder_position;

    if ( old_position != enc_position )
    {
        log_printf( &logger, " Encoder position : %d\r\n", enc_position );
        log_printf( &logger, " ------------------------\r\n" );
    }

    old_position = enc_position;
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Magneto4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

LTE Cat.1 6 Click

0

LTE Cat.1 6 Click is a compact add-on board with global coverage for wireless communication over LTE, UMTS, and GSM networks. This board features the SIM7600SA, a LTE Cat 1 module from SIMCom, supporting LTE-TDD/LTE-FDD/HSPA+/GSM/GPRS/EDGE communication modes. Key features include multi-band LTE support, auxiliary diversity, and optional multi-constellation GNSS. It also integrates USB Type C for power and data transfer, a micro SIM card holder, three LED indicators for network status, power, custom notifications, AT command communication, and firmware upgrades.

[Learn More]

OOK TX click

5

OOK TX click is a simple wireless transmitter that operates at the frequency of 433MHz (sub-GHz). This device allows realization of a simple, low-speed wireless ad hoc communication network between a transmitter and compatible receiver, such as the OOK RX click.

[Learn More]

LightRanger 9 Click

0

LightRanger 9 Click is a compact add-on board suitable for range-finding and distance sensing applications. This board features the TMF8828, a dToF (direct time of flight) optical distance sensor with an integrated Vertical Cavity Surface Emitting Laser (VCSEL) achieving up to 5m target detection distance from ams AG. Due to its lens on the SPAD, it supports 3x3, 4x4, 3x6, and 8x8 multizone output data and a wide, dynamically adjustable field of view. All raw data processing is performed inside the TMF8828, providing distance information and confidence values through its I2C interface. A unique addition to this Click board™ represents an additional 0.7mm thick protective lens that further reduces interference and improves the sensor's accuracy.

[Learn More]