TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141958 times)
  2. FAT32 Library (75148 times)
  3. Network Ethernet Library (59420 times)
  4. USB Device Library (49412 times)
  5. Network WiFi Library (45227 times)
  6. FT800 Library (44813 times)
  7. GSM click (31379 times)
  8. mikroSDK (30365 times)
  9. microSD click (27741 times)
  10. PID Library (27595 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

MOTION Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 572 times

Not followed.

License: MIT license  

MOTION Click is a motion detector sensitive only to live bodies. It carries PIR500B, a pyroelectric sensor. The Click is designed to run on 3.3V power supply only.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "MOTION Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "MOTION Click" changes.

Do you want to report abuse regarding "MOTION Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


MOTION Click

MOTION Click is a motion detector sensitive only to live bodies. It carries PIR500B, a pyroelectric sensor. The Click is designed to run on 3.3V power supply only.

motion_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Nov 2019.
  • Type : GPIO type

Software Support

We provide a library for the Motion Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Motion Click driver.

Standard key functions :

  • Config Object Initialization function.

    void motion_cfg_setup ( motion_cfg_t *cfg );

  • Initialization function.

    MOTION_RETVAL motion_init ( motion_t ctx, motion_cfg_t cfg );

  • Click Default Configuration function.

    void motion_default_cfg ( motion_t *ctx );

Example key functions :

  • Motion detected function

    motion_pin_state_t motion_detected ( motion_t *ctx );

  • Set states of the enable pin

    void motion_set_en_pin ( motion_t *ctx, motion_pin_state_t en_state );

Examples Description

This application detects any motion around it and shows message

The demo application is composed of two sections :

Application Init

Initializes Driver enable's the motion detection.


void application_init ( void )
{
    log_cfg_t log_cfg;
    motion_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");
    log_printf( &logger, "------------------------\r\n" );

    //  Click initialization.

    motion_cfg_setup( &cfg );
    MOTION_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    motion_init( &motion, &cfg );
    log_printf( &logger, "      Motion Click\r\n" );
    log_printf( &logger, "------------------------\r\n" );

    motion_default_cfg ( &motion );
    log_printf( &logger, "  Enable Motion sensor\r\n" );
    log_printf( &logger, "------------------------\r\n" );
    Delay_ms ( 100 );

    motion_state = MOTION_NO_DETECT;
    motion_old_state = MOTION_DETECTED;
}

Application Task

Detect the motion and send a notification to the UART.


void application_task ( void )
{
    //  Task implementation.

    motion_state = motion_detected( &motion );

    if ( motion_state == MOTION_DETECTED &&  motion_old_state == MOTION_NO_DETECT )
    {
        motion_old_state = MOTION_DETECTED;
        log_printf( &logger, "  > Motion detected! <\r\n" );
        log_printf( &logger, "------------------------\r\n" );
   }

   if ( motion_old_state == MOTION_DETECTED &  motion_state == MOTION_NO_DETECT )
   {
        log_printf( &logger, "  There is no movement\r\n" );
        log_printf( &logger, "------------------------\r\n" );
        motion_old_state = MOTION_NO_DETECT;
   }
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Motion

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Ultrasonic Parking Lot Car Counter

6

We will demonstrate you how you can easily build your fully operational Ultrasonic Parking Lot Car Counter device using PIC-Ready1 Board with PIC16F887, Two Distance Meter 2 Boards, Serial 7-seg Display and Keypad 4x4 with EasyPull. Just connect the cables, load the example and device is ready to rock

[Learn More]

OBDII Click

0

OBDII Click offers a unique opportunity to tap into the car diagnostic systems. It features the STN1110 Multiprotocol OBD to UART Interface, developed by the ScanTool technologies. This Click can be used for the communication with the Electronic Control Unit (ECU) of a vehicle, via several different OBD II diagnostic protocols such as CAN, K LINE, L LINE and J1850. The STN1110 IC is used to process requests sent by the MCU via the UART interface and return back the responses from the ECU network nodes.

[Learn More]

EnOcean 3 click

5

EnOcean 3 Click carries a ultra-low power TCM515 transceiver gateway module which operates at 868MHz radio band, perfectly suited for the realization of transceiver gateways, actuators and controllers for systems communicating based on the EnOcean radio standard.

[Learn More]