TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141478 times)
  2. FAT32 Library (74335 times)
  3. Network Ethernet Library (58867 times)
  4. USB Device Library (48921 times)
  5. Network WiFi Library (44697 times)
  6. FT800 Library (44227 times)
  7. GSM click (30937 times)
  8. mikroSDK (29817 times)
  9. PID Library (27423 times)
  10. microSD click (27375 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

POT 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Potentiometers

Downloaded: 406 times

Not followed.

License: MIT license  

POT 2 Click is a Click board™ with the accurate selectable reference voltage output.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "POT 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "POT 2 Click" changes.

Do you want to report abuse regarding "POT 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


POT 2 Click

POT 2 Click is a Click board™ with the accurate selectable reference voltage output.

pot2_click.png

Click Product page


Click library

  • Author : Jovan Stajkovic
  • Date : nov 2019.
  • Type : ADC type

Software Support

We provide a library for the Pot2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Pot2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void pot2_cfg_setup ( pot2_cfg_t *cfg );

  • Initialization function.

    POT2_RETVAL pot2_init ( pot2_t ctx, pot2_cfg_t cfg );

Example key functions :

  • Generic read function.

    pot2_data_t pot2_generic_read ( pot2_t *ctx );

Examples Description

This demo-app shows the ADC values using POT 2 Click board.

The demo application is composed of two sections :

Application Init

Configures clicks and log objects.

void application_init ( void )
{
    log_cfg_t log_cfg;
    pot2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    pot2_cfg_setup( &cfg );
    POT2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    pot2_init( &pot2, &cfg );
}

Application Task

Demo app reads ADC data and displays them as dec and hex values every second.

void application_task ( void )
{
    pot2_data_t tmp;

    tmp = pot2_generic_read ( &pot2 );
    log_printf( &logger, " ADC value : [DEC]- %d, [HEX]- 0x%x \r\n", tmp, tmp );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pot2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ECG GSR Click

0

ECG GSR Click is a complete solution for PPG, ECG and GSR application development, utilizing a specialized IC with a clinical-grade analog front-end (AFE) and electrical front-end. ECG GSR Click uses the AS7030B IC, an ultra-low power, multi-channel bio-sensor, which features a wide range of different options, making it an ideal solution for development of blood oxygen level, heart rate and galvanic skin response monitoring applications, fitness applications, for the ECG bio-authentication, and similar applications related to heart monitoring. ECG GSR Click is also equipped with the 3.5mm electrodes connectors, making it ready to be used out of the box.

[Learn More]

Expand 3 Click

0

Expand 3 Click is a compact add-on board providing general-purpose I/O expansion. This board features the DS2408, an 8-channel programmable I/O expander from Analog Devices. The DS2408 has a factory-lasered 64-bit registration number, enabling multiple Expand 3 Click boards™ to be connected on the same data line, communicating with the host MCU through a standard Dallas Semiconductor 1-Wire interface (15.3kbps or 100kbps). PIO outputs are configured as open-drain and provide a maximum on-resistance of 100Ω.

[Learn More]

Accel 31 Click

0

Accel 31 Click is a compact add-on board designed for precise motion and orientation detection in space-constrained devices. This board features the BMA580, a triaxial low-g accelerometer from Bosch Sensortec, which offers a 16-bit digital resolution with measurement ranges of ±2, ±4, ±8, and ±16 g, along with flexible output data rates from 1.56Hz to 6.4kHz, enabling high adaptability and accuracy. The BMA580 supports advanced power modes, including high-performance and low-power, self-wake-up functionality, and bone conduction-based voice activity detection.

[Learn More]