TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141818 times)
  2. FAT32 Library (74953 times)
  3. Network Ethernet Library (59310 times)
  4. USB Device Library (49305 times)
  5. Network WiFi Library (45103 times)
  6. FT800 Library (44672 times)
  7. GSM click (31286 times)
  8. mikroSDK (30210 times)
  9. microSD click (27657 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Pressure Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.20

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 614 times

Not followed.

License: MIT license  

Pressure Click is a compact and easy solution for adding pressure measurement to your design. It features LPS331AP digital output pressure sensor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Pressure Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Pressure Click" changes.

Do you want to report abuse regarding "Pressure Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Pressure Click

Pressure Click is a compact and easy solution for adding pressure measurement to your design. It features LPS331AP digital output pressure sensor.

pressure_click.png

Click Product page


Click library

  • Author : Nemanja Medakovic
  • Date : Nov 2019.
  • Type : I2C/SPI type

Software Support

We provide a library for the Pressure Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Pressure Click driver.

Standard key functions :

  • Configuration Object Setup function.

    void pressure_cfg_setup( pressure_cfg_t *cfg );

  • Click Initialization function.

    pressure_err_t pressure_init( pressure_t ctx, pressure_cfg_t cfg );

  • Click Default Configuration function.

    void pressure_default_cfg( pressure_t *ctx );

Example key functions :

  • Generic Single Write function.

    pressure_err_t pressure_generic_single_write( pressure_t *ctx, uint8_t reg_addr, uint8_t data_in );

  • Generic Multiple Read function.

    pressure_err_t pressure_generic_multiple_read( pressure_t ctx, uint8_t reg_addr, uint8_t data_out, uint8_t n_data );

  • Pressure Get function.

    float pressure_get_pressure( pressure_t *ctx );

Examples Description

This is a example which demonstrates the use of Pressure Click board. Measured pressure and temperature data from the LPS331AP sensor on Pressure Click.

The demo application is composed of two sections :

Application Init

Initializes I2C/SPI serial interface and puts a device to the initial state. Also initializes UART console module for results logging.


void application_init( void )
{
    pressure_cfg_t pressure_cfg;
    log_cfg_t console_cfg;

    //  Click initialization.
    pressure_cfg_setup( &pressure_cfg );
    PRESSURE_MAP_MIKROBUS( pressure_cfg, MIKROBUS_1 );
    pressure_init( &pressure, &pressure_cfg );
    pressure_sw_reset( &pressure );
    pressure_default_cfg( &pressure );

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( console_cfg );
    log_init( &console, &console_cfg );
    log_write( &console, "***  Pressure initialization done  ***",
               LOG_FORMAT_LINE );
    log_write( &console, "**************************************",
               LOG_FORMAT_LINE );
}

Application Task

Reads the pressure and temperature results in standard units when measurement was done and sends results to the console (usb uart terminal). Repeats operation every 500ms.


void application_task( void )
{
    uint8_t status;
    float press;
    float temp;

    status = pressure_get_status( &pressure, PRESSURE_FLAG_MASK_P_DATA_RDY |
                                             PRESSURE_FLAG_MASK_T_DATA_RDY );

    while (!status)
    {
        status = pressure_get_status( &pressure, PRESSURE_FLAG_MASK_P_DATA_RDY |
                                                 PRESSURE_FLAG_MASK_T_DATA_RDY );
    }

    press = pressure_get_pressure( &pressure );
    temp = pressure_get_temperature( &pressure );

    log_printf( &console, "** Pressure is %.2f mbar\r\n", press );
    log_printf( &console, "** Temperature is %.2f ", temp );
    log_write( &console, deg_cels, LOG_FORMAT_LINE );
    log_write( &console, "**************************************",
               LOG_FORMAT_LINE );

    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Pressure

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Smart Buck Click

0

Smart Buck Click is the two-channel step-down DC/DC converter and regulator, with plenty of additional functions. It can provide voltage measurement at each of its two programmable voltage outputs, as well as the measurement of the current consumption. In addition, it can also provide power consumption measurements of the Click board™ itself, both at the mikroBUS™ +5V power rail, and the external voltage input terminal. Finally, there is 2kbit of EEPROM at disposal, which can be used for logging the measurements, storage of the working parameters, or any other type of general purpose data.

[Learn More]

GNSS RTK Click

0

GNSS RTK Click is a compact add-on board used to enhance the precision of position data derived from satellite-based positioning systems. This board features the ZED-F9P, a multi-band GNSS module with integrated multi-band Real Time Kinematics (RTK) technology offering centimeter-level accuracy from U-blox. This module concurrently uses GNSS signals from all four GNSS constellations (GPS, GLONASS, Galileo, and BeiDou), and provides multi-band RTK with fast convergence times, reliable performance, and easy integration. It also includes moving base support, allowing both base and rover to move while computing a centimeter-level accurate position between them.

[Learn More]

Temp Probe click

5

Temp Probe Click is a compact add-on board used as thermocouple temperature monitoring system. This board features the LTC2986, a high accuracy digital temperature measurement system used to directly digitize thermocouples with 0.1°C accuracy and 0.001°C resolution from Analog Devices.

[Learn More]