TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139845 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RTC 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: RTC

Downloaded: 317 times

Not followed.

License: MIT license  

RTC 8 Click is a real time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RTC 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RTC 8 Click" changes.

Do you want to report abuse regarding "RTC 8 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


RTC 8 Click

RTC 8 Click is a real time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time.

rtc8_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : okt 2019.
  • Type : I2C type

Software Support

We provide a library for the Rtc8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Rtc8 Click driver.

Standard key functions :

  • rtc8_cfg_setup Config Object Initialization function.

    void rtc8_cfg_setup ( rtc8_cfg_t *cfg ); 
  • rtc8_init Initialization function.

    err_t rtc8_init ( rtc8_t *ctx, rtc8_cfg_t *cfg );
  • rtc8_default_cfg Click Default Configuration function.

    err_t rtc8_default_cfg ( rtc8_t *ctx );

Example key functions :

  • rtc8_set_time Set new time - 24 hour format

    err_t rtc8_set_time ( rtc8_t *ctx, rtc8_time_t *time_s );
  • rtc8_set_date Set new date

    err_t rtc8_set_date ( rtc8_t *ctx, rtc8_date_t *date_s );
  • rtx8_get_time_and_date Get RTC data ( Time and Data )

    err_t rtx8_get_time_and_date ( rtc8_t *ctx, rtc8_time_t *time_s, rtc8_date_t *date_s );

Examples Description

Demo application shows the operation of RTC 8 clicks.

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration. Sets new: Time, Date, UNIX time and alarm data.

void application_init ( void )
{
    log_cfg_t log_cfg;
    rtc8_cfg_t rtc8_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    rtc8_cfg_setup( &rtc8_cfg );
    RTC8_MAP_MIKROBUS( rtc8_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == rtc8_init( &rtc8, &rtc8_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( RTC8_ERROR == rtc8_default_cfg ( &rtc8 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    // 24h format - HH,MM,SS
    time_s.hours = 23;
    time_s.minutes = 59;
    time_s.seconds = 50;

    rtc8_set_time( &rtc8, &time_s );

    // Set date format
    date_s.weekdays = 5;
    date_s.day = 31;
    date_s.month = 12;
    date_s.year = 22;

    rtc8_set_date( &rtc8, &date_s );

    // Set UNIX time
    rtc8_set_unix_time( &rtc8, 1672527590ul );

    // Set alarm format
    alarm_s.weekdays = 6;
    alarm_s.hours = 0;
    alarm_s.minutes = 0;

    rtc8_set_alarm( &rtc8, &alarm_s );

    log_info( &logger, " Application Task " );
} 

Application Task

Read current Time, Date and UNIX time and checks if the alarm is active.

void application_task ( void )
{
    static uint8_t time_seconds = 0xFF;
    uint8_t alarm = 0;
    uint32_t unix_time = 0;

    err_t error_flag = rtx8_get_time_and_date( &rtc8, &time_s, &date_s );
    error_flag |= rtc8_get_uinx_time( &rtc8, &unix_time );
    error_flag |= rtc8_get_alarm_flag( &rtc8, &alarm );

    if ( ( RTC8_OK == error_flag ) && ( time_seconds != time_s.seconds ) )
    {
        display_weekday ( date_s.weekdays );
        log_printf( &logger, " Time: %.2u:%.2u:%.2u\r\n Date: %.2u.%.2u.20%.2u.\r\n", 
                    ( uint16_t ) time_s.hours, ( uint16_t ) time_s.minutes,
                    ( uint16_t ) time_s.seconds, ( uint16_t ) date_s.day, 
                    ( uint16_t ) date_s.month, ( uint16_t ) date_s.year );
        log_printf( &logger, " UNIX: %lu\r\n", unix_time );
        if ( RTC8_ALARM_IS_ACTIVE == alarm )
        {
            log_info( &logger, " Alarm Activated!!! " );
            rtc8_reset_alarm_flag( &rtc8 );
        }
        log_printf( &logger, "------------------\r\n" );
        time_seconds = time_s.seconds;
    }
    Delay_ms ( 200 );
}

Note

Comment out the lines for setting date and time if you would like the module to keep counting time after a reset or shut down.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Rtc8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

eINK 1.54 inch display

0

eINK Click is an adapter Click board™, used to interface a compatible eINK display with the host MCU.

[Learn More]

Battery Source Click

0

Battery Source Click is a compact add-on board designed to boost power from a battery for portable applications. This board features the TPS81256, a high-efficiency step-up converter from Texas Instruments. The board boosts input voltage (2.5V to 5.5V) to 5V/1A on a USB Type-C connector. It operates at a 4MHz switching frequency, enters Power-Save mode at light loads, and reduces supply current to 43μA during light load operation. The board supports over 3W output power and has an input current of less than 1µA in shutdown mode, maximizing battery life.

[Learn More]

SwipeSwitch Click

0

SwipeSwitch Click is capacitive touch, gesture, and proximity sensing Click board™, which is equipped with the IQS266, an integrated trackpad controller circuit which features ProxSense® and IQ Switch® technologies. This IC consists of a 2x3-channel capacitive trackpad controller, and a single self-capacitive proximity sensor, which can be used to wake up the device. This ensures very low power consumption, as the device is able to stay in the Sleep mode when not used. The IQS266 can detect a number of various configurable swipe and tap gestures. An Automatic Tuning Implementation (ATI) feature ensures an optimized performance in various conditions.

[Learn More]