TOP Contributors

  1. MIKROE (2656 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136876 times)
  2. FAT32 Library (70000 times)
  3. Network Ethernet Library (55999 times)
  4. USB Device Library (46305 times)
  5. Network WiFi Library (41923 times)
  6. FT800 Library (41206 times)
  7. GSM click (29012 times)
  8. PID Library (26423 times)
  9. mikroSDK (26396 times)
  10. microSD click (25386 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LIN click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: LIN

Downloaded: 285 times

Not followed.

License: MIT license  

The LIN Click is a Click board™ that features the TLE7259-3GE, a LIN transceiver from Infineon Technologies, with integrated wake-up and protection features.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LIN click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LIN click" changes.

Do you want to report abuse regarding "LIN click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


LIN click

The LIN Click is a Click board™ that features the TLE7259-3GE, a LIN transceiver from Infineon Technologies, with integrated wake-up and protection features.

lin_click.png

click Product page


Click library

  • Author : MikroE Team
  • Date : Apr 2020.
  • Type : UART type

Software Support

We provide a library for the Lin Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Lin Click driver.

Standard key functions :

  • Config Object Initialization function.

    void lin_cfg_setup ( lin_cfg_t *cfg );

  • Initialization function.

    LIN_RETVAL lin_init ( lin_t ctx, lin_cfg_t cfg );

Example key functions :

  • Generic write function.

    void lin_generic_write ( lin_t ctx, char data_buf, uint16_t len );

  • Generic read function.

    int32_t lin_generic_read ( lin_t ctx, char data_buf, uint16_t max_len );

  • Set enable pin state.

    void lin_set_enable ( lin_t *ctx, uint8_t state );

Examples Description

This example reads and processes data from LIN clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    lin_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    lin_cfg_setup( &cfg );
    LIN_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    lin_init( &lin, &cfg );
    Delay_ms ( 100 );

    lin_set_enable ( &lin, 1 );
    lin_set_wake_up ( &lin, 0 );
    Delay_ms ( 100 );
#ifdef DEMO_APP_RECEIVER
    log_info( &logger, "---- Receiver mode ----" );
#endif    
#ifdef DEMO_APP_TRANSMITTER
    log_info( &logger, "---- Transmitter mode ----" );
#endif   
}

Application Task

Depending on the selected mode, it reads all the received data or sends the desired message every 2 seconds.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    lin_process( );
#endif    

#ifdef DEMO_APP_TRANSMITTER
    lin_generic_write( &lin, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
    log_info( &logger, "---- Data sent ----" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif   
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Lin

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

I2C isolator click

0

I2C Isolator click carries ISO1540, a low-power, bidirectional isolator compatible with I2C interfaces. On the board, the Texas Instruments chip is connected to two sets of I2C pins, one on the mikroBUS connector (SDA, SCL), the other on the upper edge of the board (SCL2, SDL2).

[Learn More]

DC Motor 26 click

0

DC Motor 26 Click is a compact add-on board with a brushed DC motor driver. This board features the TB9053FTG, a PWM-type, dual-channel, H-bridge, brushed DC motor driver from Toshiba Semiconductor. The TB9053FTG is rated for an operating voltage range from 4.5V to 28V, with the motor controlled directly through a PWM signal or SPI serial interface. In addition, this driver allows a dual configuration with two motors with 5A current ratings per channel or one 10A channel drive in a Parallel mode of operation. It also has complete diagnostic and protection capabilities supporting robust and reliable operation.

[Learn More]

Environment 2 click

0

Environment 2 Click is a compact add-on board containing best-in-class SHT humidity and SGP air-quality sensing solutions from Sensirion. This board features SHT40 and SGP40, a high-accuracy ultra-low-power relative humidity, and a temperature sensor combined with MOx based gas sensor. The SHT40 sensor offers linearized digital output, provides constant temperature accuracy, up to 0.1°C, and shows the best performance when operated within the temperature and humidity range of 5-60°C and 20-80%RH, while the SGP40, a digital gas sensor, features a temperature-controlled micro hot-plate providing a humidity-compensated VOC-based indoor air quality signal. This Click board™ is suitable for indoor air quality and various temperature and humidity-related applications

[Learn More]