TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142077 times)
  2. FAT32 Library (75302 times)
  3. Network Ethernet Library (59499 times)
  4. USB Device Library (49525 times)
  5. Network WiFi Library (45289 times)
  6. FT800 Library (44918 times)
  7. GSM click (31441 times)
  8. mikroSDK (30452 times)
  9. microSD click (27802 times)
  10. PID Library (27624 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Air quality 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 617 times

Not followed.

License: MIT license  

Air quality 5 Click is a triple MOS sensor on a single Click board™, which can detect gas pollution for a number of different gases. The onboard sensor is specially designed to detect the pollution from automobile exhausts, as well as the gas pollution from the industrial or agricultural industry.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Air quality 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Air quality 5 Click" changes.

Do you want to report abuse regarding "Air quality 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Air quality 5 Click

Air quality 5 Click is a triple MOS sensor on a single Click board™, which can detect gas pollution for a number of different gases. The onboard sensor is specially designed to detect the pollution from automobile exhausts, as well as the gas pollution from the industrial or agricultural industry.

airquality5_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Airquality5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Airquality5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void airquality5_cfg_setup ( airquality5_cfg_t *cfg );

  • Initialization function.

    AIRQUALITY5_RETVAL airquality5_init ( airquality5_t ctx, airquality5_cfg_t cfg );

  • Click Default Configuration function.

    void airquality5_default_cfg ( airquality5_t *ctx );

Example key functions :

  • Functions for write data in register.

    void airq5_write_data ( airquality5_t *ctx, uint8_t reg, uint16_t data_b );

  • Functions for read data from register.

    uint16_t airq5_read_data ( airquality5_t *ctx, uint8_t reg );

  • Functions for configuration.

    void airq5_set_configuration ( airquality5_t *ctx, uint16_t config );

Examples Description

This application can detect gas pollution for a number of different gases.

The demo application is composed of two sections :

Application Init

Initializes device and configuration chip.


void application_init ( void )
{
    log_cfg_t log_cfg;
    airquality5_cfg_t cfg;
    airquality5.data_config = 0x8583;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    airquality5_cfg_setup( &cfg );
    AIRQUALITY5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    airquality5_init( &airquality5, &cfg );
}

Application Task

Reads the values of CO, NH3 and NO2 sensor and logs data on USBUART every 500ms.


void application_task ( void )
{
    uint16_t NO2_sensor_data;
    uint16_t NH3_sensor_data;
    uint16_t CO_sensor_data;

    CO_sensor_data = airq5_read_sensor_data( &airquality5, AIRQ5_DATA_CHANNEL_CO );

    NO2_sensor_data = airq5_read_sensor_data( &airquality5, AIRQ5_DATA_CHANNEL_NO2 );
    log_printf( &logger, " NO2 data: %d\r\n", NO2_sensor_data );

    NH3_sensor_data = airq5_read_sensor_data( &airquality5, AIRQ5_DATA_CHANNEL_NH3 );
    log_printf( &logger, " NH3 data: %d\r\n", NH3_sensor_data );

    CO_sensor_data = airq5_read_sensor_data( &airquality5, AIRQ5_DATA_CHANNEL_CO );
    log_printf( &logger," CO data: %d\r\n", CO_sensor_data );

    log_printf( &logger, " -------- ");
    Delay_ms ( 200 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Airquality5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Clock Gen 4 Click

0

Clock Gen 4 Click is a compact add-on board that contains both a clock generator and a multiplier/jitter reduced clock frequency synthesizer. This board features the CS2200-CP, an analog PLL architecture comprised of a Delta-Sigma fractional-N frequency synthesizer from Cirrus Logic. This clocking device utilizes a programmable phase lock loop and allows frequency synthesis and clock generation from a stable reference clock. It generates a low-jitter PLL clock from an external crystal, supports both I²C and SPI for full software control, and also has configurable auxiliary clock output. This Click board™ is suitable for MCU clock source, or in applications like digital effects processors, digital mixing consoles, and many more.

[Learn More]

Relay 7 Click

0

Relay 7 Click is a compact add-on board for precise load control and monitoring applications. This board features four CRR05-1As, a CRR series reed relay from Standex Electronics, well-known for its ultra-miniature SMD design and high insulation resistance. These four relays each have four load connection terminals and orange LED indicators that signal the operational status, ensuring clear and immediate feedback. These relays are highly reliable and come in a rugged thermoset over-molded package with ceramic substrate and a typical 1013Ω insulation resistance. They support a coil voltage of 5VDC and switching capabilities up to 170VDC/0.5A/10W. It is ideally suited for test and measurement (ATE) equipment, instrumentation, and telecommunications.

[Learn More]

Accel 29 Click

0

Accel 29 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL314, a three-axis ±200g accelerometer from Analog Devices. The ADXL314 offers 16-bit digital output data with a configurable host interface that supports SPI and I2C serial communication. An integrated memory management system with a 32-level FIFO buffer can store data to minimize host processor activity and lower overall system power consumption. Low power modes enable intelligent motion-based power management with threshold sensing and active acceleration measurement at low power dissipation.

[Learn More]