TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72622 times)
  3. Network Ethernet Library (57643 times)
  4. USB Device Library (47957 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28670 times)
  9. PID Library (27057 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Buck Boost 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Buck-Boost

Downloaded: 238 times

Not followed.

License: MIT license  

Buck-Boost 2 Click is an advanced DC-DC step-down/step-up regulator (buck/boost), which is able to provide regulated 5V on its output, regardless of the input voltage.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Buck Boost 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Buck Boost 2 Click" changes.

Do you want to report abuse regarding "Buck Boost 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Buck Boost 2 Click

Buck-Boost 2 Click is an advanced DC-DC step-down/step-up regulator (buck/boost), which is able to provide regulated 5V on its output, regardless of the input voltage.

buckboost2_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : GPIO type

Software Support

We provide a library for the BuckBoost2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for BuckBoost2 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void buckboost2_cfg_setup ( buckboost2_cfg_t *cfg );

  • Initialization function.

    BUCKBOOST2_RETVAL buckboost2_init ( buckboost2_t ctx, buckboost2_cfg_t cfg );

  • Click Default Configuration function.

    void buckboost2_default_cfg ( buckboost2_t *ctx );

Example key functions :

  • This function sets the working mode.

    void buckboost2_set_mode ( buckboost2_t *ctx , uint8_t mode );

  • This function powers OFF the chip

    void buckboost2_power_off ( buckboost2_t *ctx );

  • This function powers on the chip.

    void buckboost2_power_on ( buckboost2_t *ctx );

Examples Description

This application enables use of DC-DC step-down/step-up regulator (buck/boost).

The demo application is composed of two sections :

Application Init

Initializes Driver init and turn ON chip and settings mode with improvement current.


void application_init ( void )
{
    log_cfg_t log_cfg;
    buckboost2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info(&logger, "---- Application Init ----");

    //  Click initialization.

    buckboost2_cfg_setup( &cfg );
    BUCKBOOST2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    buckboost2_init( &buckboost2, &cfg );

    buckboost2_power_on( &buckboost2 );
    buckboost2_set_mode( &buckboost2, BUCKBOOST2_WITH_IMPROVEMENT );
}

Application Task

The Click has a constant output voltage of 5V, no additional settings are required.


void application_task ( void )
{
    //  Task implementation.

     Delay_1sec( );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BuckBoost2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

DC MOTOR 7 click

6

DC MOTOR 7 click is a dual brushed DC motor driving Click board, featuring the advanced PWM chopper-type integrated DC motor driver, labeled as TB67H400AFTG.

[Learn More]

Servo click

5

Servo click is a 16-channel PWM servo driver with the voltage sensing circuitry. It can be used to simultaneously control 16 servo motors, each with its own programmable PWM signal.

[Learn More]

Thermo 21 Click

0

Thermo 21 Click is a compact add-on board that provides an accurate temperature measurement. This board features the ADT7301, a high-precision digital temperature sensor from Analog Devices. The ADT7301 houses an on-chip temperature sensor, a 13-bit A/D converter, a reference circuit, and serial interface logic functions in one package. Characterized by its high accuracy (up to ±0.5°C typical) and high resolution of 0.03125°C, this temperature sensor provides temperature data to the host controller with a configurable SPI interface. This Click board™ is appropriate for process control, environmental monitoring, domestic appliances, electronic test equipment, or other temperature measurement applications.

[Learn More]