We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.15
mikroSDK Library: 2.0.0.0
Category: Motion
Downloaded: 170 times
Not followed.
License: MIT license
Accel 3 Click represent 3-axis linear accelerometer.
Do you want to subscribe in order to receive notifications regarding "Accel 3 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 3 Click" changes.
Do you want to report abuse regarding "Accel 3 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
3353_accel_3_click.zip [405.66KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Accel 3 Click represent 3-axis linear accelerometer.
We provide a library for the Accel3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.
This library contains API for Accel3 Click driver.
Config Object Initialization function.
void accel3_cfg_setup ( accel3_cfg_t *cfg );
Initialization function.
ACCEL3_RETVAL accel3_init ( accel3_t ctx, accel3_cfg_t cfg );
Click Default Configuration function.
void accel3_default_cfg ( accel3_t *ctx );
This function select communication mode and executes start initialization.
void accel3_default_cfg ( accel3_t ctx, accel3_cfg_t cfg );
This function reads Accel data ( X, Y and Z axis ) from the desired Accel registers of the H3LIS331DL module.
void accel3_read_data ( accel3_t ctx, accel3_data_t accel3_data );
This is an example which demonstrates the usage of Accel 3 Click board.
The demo application is composed of two sections :
Application Init performs Logger and Click initialization.
void application_init ( void )
{
log_cfg_t log_cfg;
accel3_cfg_t cfg;
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_printf( &logger, "--------------------------\r\n\n" );
log_printf( &logger, " Application Init\r\n" );
Delay_ms ( 100 );
// Click initialization.
accel3_cfg_setup( &cfg );
ACCEL3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
accel3_init( &accel3, &cfg );
log_printf( &logger, "--------------------------\r\n\n" );
log_printf( &logger, " ----- Accel 3 Click -----\r\n" );
log_printf( &logger, "--------------------------\r\n\n" );
Delay_ms ( 1000 );
accel3_default_cfg ( &accel3, &cfg );
Delay_ms ( 100 );
log_printf( &logger, " -- Initialization done. --\r\n" );
log_printf( &logger, "--------------------------\r\n\n" );
Delay_ms ( 1000 );
}
Measured coordinates (X,Y,Z) are being sent to the UART where you can track their changes. All data logs on USB UART for every 1 sec.
void application_task ( void )
{
accel3_read_data( &accel3, &accel3_data );
Delay_ms ( 100 );
log_printf( &logger, " Accelerometer \r\n" );
log_printf( &logger, "----------------------------\r\n" );
log_printf( &logger, " X = %d \r\n", accel3_data.x );
log_printf( &logger, " Y = %d \r\n", accel3_data.y );
log_printf( &logger, " Z = %d \r\n", accel3_data.z );
log_printf( &logger, "----------------------------\r\n" );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.
Other mikroE Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.