TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139254 times)
  2. FAT32 Library (71751 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42404 times)
  7. GSM click (29835 times)
  8. mikroSDK (28078 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 206 times

Not followed.

License: MIT license  

The acceleration sensing is based on the principle of measuring the differential capacitance, which further decreases errors due to manufacturing imperfections, temperature and other environmental influences. The micro-electromechanical sensor (MEMS) is coupled with a very advanced application specific integrated circuit (ASIC), which allows the simplicity of the KXTJ3-1057 design, requiring a low number of additional external components.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 7 Click" changes.

Do you want to report abuse regarding "Accel 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Accel 7 Click

The Accel 7 Click is a tri-axis acceleration sensing Click board™ powered by the KXTJ3-1057 14-bit tri-axis digital accelerometer from Kionix. This sensor was developed using proprietary Kionix micromachining technology, resulting in high accuracy and excellent noise immunity.

accel7_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Accel7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Accel7 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void accel7_cfg_setup ( accel7_cfg_t *cfg );

  • Initialization function.

    ACCEL7_RETVAL accel7_init ( accel7_t ctx, accel7_cfg_t cfg );

  • Click Default Configuration function.

    void accel7_default_cfg ( accel7_t *ctx, uint8_t resolution, uint8_t range );

Example key functions :

  • This function reads two bytes of data from the desired axis register.

    int16_t accel7_get_axis ( accel7_t *ctx, uint8_t axis );

  • This function calculates the resolution and range values which are used in the default_cfg() function.

    void accel7_res_range_cfg ( accel7_t ctx, uint8_t resolution, uint8_t *range );

  • This function reads the state of the interrupt pin.

    uint8_t accel7_get_interrupt_state ( accel7_t *ctx );

Examples Description

This example shows how data from all three axes is collected, processed and later displayed in the logger module.

The demo application is composed of two sections :

Application Init

Initializes and configures the Click and logger modules.


void application_init (  )
{
    log_cfg_t log_cfg;
    accel7_cfg_t cfg;

    uint8_t resolution = ACCEL7_DATA_RESP_14bit;
    uint8_t range = ACCEL7_RANGE_8g;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----\r\n" );

    //  Click initialization.

    accel7_cfg_setup( &cfg );
    ACCEL7_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    accel7_init( &accel7, &cfg );

    accel7_res_range_cfg( &accel7, &resolution, &range );
    accel7_default_cfg( &accel7, resolution, range );

    delay_ms( 100 );
}

Application Task

Reads and displays data from all three axes every second.


void application_task (  )
{
    int16_t x_axis;
    int16_t y_axis;
    int16_t z_axis;

    x_axis = accel7_get_axis( &accel7, ACCEL7_AXIS_X );
    y_axis = accel7_get_axis( &accel7, ACCEL7_AXIS_Y );
    z_axis = accel7_get_axis( &accel7, ACCEL7_AXIS_Z );

    log_printf( &logger, "X axis: %d\r\n", x_axis );
    log_printf( &logger, "Y axis: %d\r\n", y_axis );
    log_printf( &logger, "Z axis: %d\r\n", z_axis );   

    log_printf( &logger, "------------------\r\n" );

    delay_ms( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

eFuse 7 Click

0

eFuse 7 Click is a compact add-on board with a power path protection solution that limits circuit currents and voltages to safe levels during fault conditions. This board features the LS12052BD33, an eFuse with over-voltage protection and blocking FET control from Littelfuse.

[Learn More]

Watchdog click

5

Watchdog Click is a compact add-on board that contains a simple countdown timer for a wide variety of applications. This board features the TPS3430, a standalone watchdog timer with a programmable watchdog window and programmable reset delay from Texas Instruments.

[Learn More]

VAV Press Click

0

VAV Press Click is a compact add-on board that contains a board-mount pressure sensor. This board features the LMIS025B, a low differential pressure sensor from First Sensor (part of TE Connectivity). It is based on thermal flow measurement of gas through a micro-flow channel integrated within the sensor chip. The innovative LMI technology features superior sensitivity, especially for ultra-low pressures ranging from 0 to 25Pa. The extremely low gas flow through the sensor ensures high immunity to dust contamination, humidity, and long tubing compared to other flow-based pressure sensors.

[Learn More]