TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141701 times)
  2. FAT32 Library (74778 times)
  3. Network Ethernet Library (59220 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30104 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Alcohol 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.17

mikroSDK Library: 2.0.0.0

Category: Gas

Downloaded: 487 times

Not followed.

License: MIT license  

Alcohol 3 Click is a gas sensor Click board, that reacts to the presence of deoxidizing and reducing gases, such as ethanol (also known as alcohol).

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Alcohol 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Alcohol 3 Click" changes.

Do you want to report abuse regarding "Alcohol 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Alcohol 3 Click

Alcohol 3 Click is a gas sensor Click board, that reacts to the presence of deoxidizing and reducing gases, such as ethanol (also known as alcohol).

alcohol3_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : nov 2019.
  • Type : I2C type

Software Support

We provide a library for the Alcohol3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Alcohol3 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void alcohol3_cfg_setup ( alcohol3_cfg_t *cfg );

  • Initialization function.

    ALCOHOL3_RETVAL alcohol3_init ( alcohol3_t ctx, alcohol3_cfg_t cfg );

  • Click Default Configuration function.

    void alcohol3_default_cfg ( alcohol3_t *ctx );

Example key functions :

  • This function reads CO (Carbon monoxide) data in ppm (1 ppm - 1000 ppm).

    uint16_t alcohol3_get_co_in_ppm ( alcohol3_t *ctx );

  • This function reads percentage of alcohol in the blood (BAC).

    float alcohol3_get_percentage_bac ( alcohol3_t *ctx );

  • This function reads 12bit ADC value.

    uint16_t alcohol3_get_adc_data ( alcohol3_t *ctx );

Examples Description

Code of this sensor reacts to the presence of deoxidizing and reducing gases, such as ethanol (also known as alcohol).

The demo application is composed of two sections :

Application Init

Application Init performs Logger and Click initialization.


void application_init ( void )
{
    log_cfg_t log_cfg;
    alcohol3_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_printf( &logger, "--------------------------\r\n\n" );
    log_printf( &logger, "     Application  Init\r\n" );
    Delay_ms ( 100 );

    //  Click initialization.

    alcohol3_cfg_setup( &cfg );
    ALCOHOL3_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    alcohol3_init( &alcohol3, &cfg );

    log_printf( &logger, "--------------------------\r\n\n" );
    log_printf( &logger, " ---- Alcohol 3 Click ----\r\n" );
    log_printf( &logger, "--------------------------\r\n\n" );
    Delay_ms ( 1000 );

    log_printf( &logger, " ---- Initialization ---\r\n" );
    log_printf( &logger, "--------------------------\r\n\n" );
    Delay_ms ( 1000 );
}

Application Task

Reads percentage of alcohol in the blood (BAC) and this data logs to USBUART every 1 sec.


void application_task ( void )
{
    uint16_t co_ppm;
    uint16_t p_bac;

    //  Task implementation.

    log_printf( &logger, " --- Alcohol diagnostics ---- \r\n" );

    co_ppm = alcohol3_get_co_in_ppm ( &alcohol3 );
    log_printf( &logger, " co in ppm  %d    | \r\n", co_ppm );

    p_bac = alcohol3_get_percentage_bac( &alcohol3 ) * 1000;

    if ( 10 > p_bac && p_bac < 100 )
    {
        log_printf( &logger, " BAC    %d  | 0.00\r\n", p_bac );
    }
    else if ( 100 <= p_bac && 1000 > p_bac )
    {
        log_printf( &logger, " BAC    %d  | 0.00\r\n", p_bac );
    }
    else if ( p_bac >= 1000 )
    {
        log_printf( &logger, " BAC    %d  | 0.\r\n", p_bac );
    }
    else
    {
        log_printf( &logger, " BAC  | 0.0000\r\n" );
    }
    log_printf( &logger, " ---------------------------- \r\n" );

    Delay_ms ( 1000 );
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Alcohol3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Stepper 8 Click

0

Stepper 8 Click is a motor control add on board based on TC78H670FTG from Toshiba, a clock-in and serial controlled Bipolar Stepping Motor Driver which can drive a 128 micro-stepping motor with a power supply ranging from 2.5V to 16V for wide range of applications includes USB-powered, battery-powered, and standard 9-12V system devices. A perfect solution for driving stepper motors in security cameras, portable printers, handheld scanners, pico-projectors, smartphones and many more.

[Learn More]

DC Motor 9 Click

0

DC Motor 9 Click is a brushed DC motor driver with the current limiting and current sensing. It is based on the DRV8871, an integrated H-Bridge driver IC, optimized for motor driving applications. It can be operated by two logic signals, allowing to drive the connected motor in two different ways: it can use fixed logic levels for the direction control, or it can be controlled by a PWM signal, offering an additional speed control option. The DRV8871 also contains a set of protection features, offering a very high level of reliability. Besides driving capabilities, DC Motor 9 Click can also sense current consumption at its output.

[Learn More]

ECG GSR Click

0

ECG GSR click is a complete solution for PPG, ECG and GSR application development, utilizing a specialized IC with a clinical-grade analog front-end (AFE) and electrical front-end. ECG GSR click uses the AS7030B IC, an ultra-low power, multi-channel bio-sensor, which features a wide range of different options, making it an ideal solution for development of blood oxygen level, heart rate and galvanic skin response monitoring applications, fitness applications, for the ECG bio-authentication, and similar applications related to heart monitoring. ECG GSR click is also equipped with the 3.5mm electrodes connectors, making it ready to be used out of the box.

[Learn More]