TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142085 times)
  2. FAT32 Library (75310 times)
  3. Network Ethernet Library (59504 times)
  4. USB Device Library (49526 times)
  5. Network WiFi Library (45290 times)
  6. FT800 Library (44928 times)
  7. GSM click (31442 times)
  8. mikroSDK (30468 times)
  9. microSD click (27804 times)
  10. PID Library (27625 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

AudioAmp Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.20

mikroSDK Library: 2.0.0.0

Category: Amplifier

Downloaded: 516 times

Not followed.

License: MIT license  

AudioAmp Click is a compact add-on board that can add a mono audio amplifier function to your application. This board features the LM48100Q-Q1, a Boomer™ mono 1.3W audio power amplifier with output fault detection and volume control from Texas Instruments. The AudioAmp Click has one dual 3.5mm audio input jack and, next to it, a screw terminal for connecting output wires to a 1.3W, 8 Ohm passive speaker. Each input has its own independent 32-step volume control.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "AudioAmp Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "AudioAmp Click" changes.

Do you want to report abuse regarding "AudioAmp Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


AudioAmp Click

AudioAmp Click is a compact add-on board that can add a mono audio amplifier function to your application. This board features the LM48100Q-Q1, a Boomer™ mono 1.3W audio power amplifier with output fault detection and volume control from Texas Instruments. The AudioAmp Click has one dual 3.5mm audio input jack and, next to it, a screw terminal for connecting output wires to a 1.3W, 8 Ohm passive speaker. Each input has its own independent 32-step volume control.

audioamp_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jan 2020.
  • Type : I2C type

Software Support

We provide a library for the AudioAmp Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for AudioAmp Click driver.

Standard key functions :

  • audioamp_cfg_setup Config Object Initialization function.

    void audioamp_cfg_setup ( audioamp_cfg_t *cfg ); 
  • audioamp_init Initialization function.

    err_t audioamp_init ( audioamp_t *ctx, audioamp_cfg_t *cfg );

Example key functions :

  • audioamp_set_volume Set volume function.

    err_t audioamp_set_volume ( audioamp_t *ctx, uint8_t in_sel, uint8_t volume_level );
  • audioamp_power_on Turn on the Audio Amp Click function.

    err_t audioamp_power_on ( audioamp_t *ctx );
  • audioamp_mute Mute input function.

    err_t audioamp_mute ( audioamp_t *ctx );

Examples Description

AudioAmp Click is a stereo audio amplifier which can be controlled by using this Click driver.

The demo application is composed of two sections :

Application Init

Performs driver and log module initialization, enables I2C, turns on the AudioAmp device and sends a message about init status.


void application_init ( void )
{
    log_cfg_t log_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init... ----" );

    audioamp_cfg_t audioamp_cfg;

    //  Click initialization.

    audioamp_cfg_setup( &audioamp_cfg );
    AUDIOAMP_MAP_MIKROBUS( audioamp_cfg, MIKROBUS_1 );

    if ( audioamp_init( &audioamp, &audioamp_cfg ) == AUDIOAMP_INIT_ERROR )
    {
        log_info( &logger, "---- Application Init Error. ----" );
        log_info( &logger, "---- Please, run program again... ----" );

        for ( ; ; );
    }

    log_info( &logger, "---- Application Init Done. ----" );
    log_info( &logger, "---- Application Running... ----" );
    log_info( &logger, "---- Check your audio speaker. ----\n" );

    audioamp_power_on( &audioamp );
}

Application Task

This is a example which demonstrates the use and control of the AudioAmp Click board.


void application_task ( void )
{
    log_info( &logger, "---- Volume level control testing... ----" );

    audioamp_set_volume( &audioamp, AUDIOAMP_IN_1 | AUDIOAMP_IN_2, 5 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    audioamp_set_volume( &audioamp, AUDIOAMP_IN_1 | AUDIOAMP_IN_2, 15 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    audioamp_set_volume( &audioamp, AUDIOAMP_IN_1 | AUDIOAMP_IN_2, 25 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    audioamp_set_volume( &audioamp, AUDIOAMP_IN_1 | AUDIOAMP_IN_2, 32 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_info( &logger, "---- Volume level control test done. ----" );
    log_info( &logger, "---- Input mute/unmute control testing... ----" );

    audioamp_mute( &audioamp );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    audioamp_unmute( &audioamp );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_info( &logger, "---- Input mute/unmute control test done. ----" );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.AudioAmp

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

ECG GSR Click

0

ECG GSR Click is a complete solution for PPG, ECG and GSR application development, utilizing a specialized IC with a clinical-grade analog front-end (AFE) and electrical front-end. ECG GSR Click uses the AS7030B IC, an ultra-low power, multi-channel bio-sensor, which features a wide range of different options, making it an ideal solution for development of blood oxygen level, heart rate and galvanic skin response monitoring applications, fitness applications, for the ECG bio-authentication, and similar applications related to heart monitoring. ECG GSR Click is also equipped with the 3.5mm electrodes connectors, making it ready to be used out of the box.

[Learn More]

3 x Buck click

5

3xBuck click is a triple step-down (buck) converter Click board. It features three independent output terminals that can provide 1.8V, 3.3V, and 5V with the combined current output up to 3A.

[Learn More]

4-20mA T 2 Click

0

4-20mA T 2 Click is a compact add-on board for transmitting an analog output current over an industry-standard 4-20mA current loop. This board features DAC161S997, a low-power 16-bit ΣΔ digital-to-analog converter (DAC) from Texas Instruments. It has a programmable Power-Up condition and loop-error detection/reporting accessible via simple 4-wire SPI for data transfer and configuration of the DAC functions. In addition, it is characterized by low power consumption and the possibility of simple Highway Addressable Remote Transducer (HART) modulator interfacing, allowing the injection of FSK-modulated digital data into the 4-20mA current loop.

[Learn More]