TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57255 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Boost 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.20

mikroSDK Library: 2.0.0.0

Category: Boost

Downloaded: 229 times

Not followed.

License: MIT license  

Boost 4 Click carries the TPS61230A, a high efficiency fully integrated synchronous boost converter from Texas Instruments. The Click is designed to run on a 3.3V power supply.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Boost 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Boost 4 Click" changes.

Do you want to report abuse regarding "Boost 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Boost 4 Click

Boost 4 Click carries the TPS61230A, a high efficiency fully integrated synchronous boost converter from Texas Instruments. The Click is designed to run on a 3.3V power supply.

boost4_click.png

Click Product page


Click library

  • Author : Jovan Stajkovic
  • Date : Dec 2019.
  • Type : SPI type

Software Support

We provide a library for the Boost4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Boost4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void boost4_cfg_setup ( boost4_cfg_t *cfg );

  • Initialization function.

    BOOST4_RETVAL boost4_init ( boost4_t ctx, boost4_cfg_t cfg );

Example key functions :

  • Generic SPI transfer, for sending and receiving packages.

    void boost4_generic_transfer ( boost4_t ctx, spi_master_transfer_data_t block );

  • Function set output voltage by write 12-bit data to the register on the TPS61230A High Efficiency Step-Up Converter of Boost 4 Click.

    void boost4_set_out_voltage ( boost4_t *ctx, uint16_t value );

  • Function is used to enabled or disabled the device.

    void boost4_enable ( boost4_t *ctx, uint8_t state );

Examples Description

This example demonstrates the use of Boost 4 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger, and enables the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    boost4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    boost4_cfg_setup( &cfg );
    BOOST4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    boost4_init( &boost4, &cfg );
    log_printf( &logger, "-----------------------------\r\n" );
    log_printf( &logger, "        Boost 4 Click        \r\n" );
    log_printf( &logger, "-----------------------------\r\n" );
    boost4_enable( &boost4, BOOST4_ENABLE );
    Delay_ms ( 1000 );
}

Application Task

Set the desired output voltage by cycling through a couple of predefined voltage values. All data are being logged on USB UART every 3 seconds.


void application_task ( void )
{
    log_printf( &logger, " Set the max Vout \r\n" );
    boost4_set_out_voltage( &boost4, BOOST4_VOUT_MAX );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-----------------------------\r\n" );

    log_printf( &logger, " Set Vout to 5V\r\n" );

    boost4_set_out_voltage( &boost4, BOOST4_VOUT_5 );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-----------------------------\r\n" );

    log_printf( &logger, " Set Vout to 4.5V\r\n" );

    boost4_set_out_voltage( &boost4, BOOST4_VOUT_4_5 );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-----------------------------\r\n" );

    log_printf( &logger, " Set Vout to 4V\r\n" );

    boost4_set_out_voltage( &boost4, BOOST4_VOUT_4 );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-----------------------------\r\n" );

    log_printf( &logger, " Set Vout to 3.5V\r\n" );

    boost4_set_out_voltage( &boost4, BOOST4_VOUT_3_5 );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-----------------------------\r\n" );

    log_printf( &logger, " Set Vout to 3V\r\n" );

    boost4_set_out_voltage( &boost4, BOOST4_VOUT_3 );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-----------------------------\r\n" );

    log_printf( &logger, " Set Vout to 2.5V\r\n" );

    boost4_set_out_voltage( &boost4, BOOST4_VOUT_2_5 );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-----------------------------\r\n" );

    log_printf( &logger, " Set the min Vout \r\n" );

    boost4_set_out_voltage( &boost4, BOOST4_VOUT_MIN );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-----------------------------\r\n" );
}  

Note

Vout cannot be set to voltage below Vin. So in order to get all values at Vout exactly as it is set in this example, please provide 2.5V to Vin.

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Boost4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

mikromedia 5 for Tiva

1

Set of examples for mikromedia 5 for Tiva. Provided examples demonstrate working with mikromedia's various features and modules: Accelerometer, MMC SD card, MP3, TFT, Buzzer, nRF, Touch Panel, WiFi, RTCC, USB Host.

[Learn More]

Temp-Hum 10 click

5

Temp-Hum 10 Click is a smart temperature and humidity sensing Click board, aimed towards IoT applications, due to its extremely small size and very low power consumption.

[Learn More]

Accel 4 Click

0

Accel 4 Click is a compact add-on board that contains an acceleration sensor. This board features the FXLS8964AF, a 12-bit three-axis accelerometer from NXP Semiconductors. It allows selectable full-scale acceleration measurements in ranges of �2g, �4g, �8g, or �16g in three axes with a configurable host interface that supports both SPI and I2C serial communication. The FXLS8964AF supports both high-performance and low-power operating modes, allowing maximum flexibility to meet the resolution and power needs for various unique use cases.

[Learn More]