TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (398 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (127 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140722 times)
  2. FAT32 Library (73206 times)
  3. Network Ethernet Library (58143 times)
  4. USB Device Library (48293 times)
  5. Network WiFi Library (43929 times)
  6. FT800 Library (43424 times)
  7. GSM click (30419 times)
  8. mikroSDK (29123 times)
  9. PID Library (27132 times)
  10. microSD click (26779 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Scanner Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 195 times

Not followed.

License: MIT license  

Scanner Click as his name said, is an optical scanner expansion board for building optical cost-sensitive scanners and printers.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Scanner Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Scanner Click" changes.

Do you want to report abuse regarding "Scanner Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Scanner Click

Scanner Click as his name said, is an optical scanner expansion board for building optical cost-sensitive scanners and printers.

scanner_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Jun 2020.
  • Type : GPIO type

Software Support

We provide a library for the Scanner Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Scanner Click driver.

Standard key functions :

  • Config Object Initialization function.

    void scanner_cfg_setup ( scanner_cfg_t *cfg );

  • Initialization function.

    SCANNER_RETVAL scanner_init ( scanner_t ctx, scanner_cfg_t cfg );

Example key functions :

  • Pulse function.

    void scanner_clock ( scanner_t *ctx );

  • Write function.

    void scanner_serial_write_reg ( scanner_t *ctx, uint8_t reg_adr, uint8_t write_data );

  • Read pixels.

    void scanner_read_pixel ( scanner_t ctx, uint8_t pixel_data );

Examples Description

This example reads data from Scanner clicks.

The demo application is composed of two sections :

Application Init

Initializes the driver and starts up the module.


void application_init ( void )
{
    log_cfg_t log_cfg;
    scanner_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "--->>> APP INIT <<<---\r\n" );

    //  Click initialization.

    scanner_cfg_setup( &cfg );
    SCANNER_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    scanner_init( &scanner, &cfg );

    Delay_ms ( 300 );

    scanner_startup( &scanner );
    Delay_ms ( 100 );

    scanner_serial_write_reg( &scanner, SCANNER_REG_MODE, SCANNER_DATA_NORMAL_MODE );

    for ( uint8_t data_cnt = 0; data_cnt < 3; )
    {
        scanner_serial_write_reg( &scanner, SCANNER_REG_OFFSET_LEFT + ( 2 * data_cnt ), 25 );
        data_cnt++;
        scanner_serial_write_reg( &scanner, SCANNER_REG_GAIN_LEFT + ( 2 * data_cnt ), 25 );
        data_cnt++;
    }
    log_printf( &logger, "--->>> APP TASK <<<--- \r\n" );
}

Application Task

Reads the array of 102 pixels and displays the results on the USB UART as frequently as possible.


void application_task ( void )
{
    uint8_t pixels[ 102 ];
    scanner_read_pixel( &scanner, pixels );

    log_printf( &logger, "left center right\r\n" );
    for ( uint8_t cnt = 0; cnt < 34; cnt++ )
    {
        log_printf( &logger, " %u   %u   %u \r\n", ( uint16_t ) pixels[ cnt ], 
                                                   ( uint16_t ) pixels[ cnt + 34 ], 
                                                   ( uint16_t ) pixels[ cnt + 68 ] );
    }
    log_printf( &logger, "----------------\r\n" );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Scanner

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

RTK Base Click

0

RTK Base Click is a compact add-on board used to improve the positional accuracy of the compatible RTK Rover board. This board features Quectel’s LG69TASMD, a dual-band multi-constellation GNSS module featuring a high-performance and high-reliability positioning engine. This module carries an RTK base station function by calculating and transmitting differential correction data via radio to allow the roving GPS to correct its position. It features the fifth generation of STMicroelectronics® positioning receiver platform with 80 tracking and four fast acquisition channels, supports up to 4 concurrent global constellations (GPS, QZSS, Galileo, and BDS) alongside RTCM 3.x protocol and commonly used UART interface.

[Learn More]

DAC 19 Click

0

DAC 19 Click is a compact add-on board designed for high-performance voltage-output applications. This board features the DAC53701-Q1, a 10-bit automotive-grade DAC from Texas Instruments, offering smart functionality through force-sense output, GPI function trigger, PWM output, and integrated nonvolatile memory (NVM). The board supports an internal or power supply reference, provides a full-scale output range, and communicates efficiently with microcontrollers using an I2C interface with up to 1MHz clock speed.

[Learn More]

DHT22 2 click

6

DHT22 2 click is used for measuring the environmental temperature and relative humidity. It uses the AM2322 sensor by ASAIR®, with very accurate thermal and humidity measuring capabilities. It can use either 1-Wire or I2C protocol to communicate with the integrated circuit.

[Learn More]