TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141818 times)
  2. FAT32 Library (74952 times)
  3. Network Ethernet Library (59310 times)
  4. USB Device Library (49305 times)
  5. Network WiFi Library (45103 times)
  6. FT800 Library (44672 times)
  7. GSM click (31286 times)
  8. mikroSDK (30210 times)
  9. microSD click (27657 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Temp-Log 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 418 times

Not followed.

License: MIT license  

Temp-Log 4 Click is a temperature measuring Click board™ featuring the SE97B IC, an accurate temperature sensor IC with integrated EEPROM.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Temp-Log 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Temp-Log 4 Click" changes.

Do you want to report abuse regarding "Temp-Log 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog

Temp Log 4 Click

Temp-Log 4 Click is a temperature measuring Click board™ featuring the SE97B IC, an accurate temperature sensor IC with integrated EEPROM.

templog4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the TempLog4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for TempLog4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void templog4_cfg_setup ( templog4_cfg_t *cfg );

  • Initialization function.

    TEMPLOG4_RETVAL templog4_init ( templog4_t ctx, templog4_cfg_t cfg );

  • Click Default Configuration function.

    void templog4_default_cfg ( templog4_t *ctx );

Example key functions :

  • Generic Write function.

    uint8_t templog4_write_reg ( templog4_t *ctx, uint8_t reg, uint16_t input_data );

  • Generic Read function.

    uint8_t templog4_read_reg ( templog4_t ctx, uint8_t reg, uint16_t out_var );

  • Set Address Pointer function.

    void templog4_set_addr_ptr ( templog4_t *ctx, uint8_t addr );

Examples Description

This application measures the temperature.

The demo application is composed of two sections :

Application Init

Initializes I2C interface and performs a device configuration for properly working.


void application_init ( void )
{
    log_cfg_t log_cfg;
    templog4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    templog4_cfg_setup( &cfg );
    TEMPLOG4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    templog4_init( &templog4, &cfg );
    templog4_default_cfg ( &templog4 );
}

Application Task

First ensures that the minimum conversion time is met, and then reads the ambient temperature calculated to the Celsius degrees.


void application_task ( void )
{
    float temperature;

    wait_conversion_done( );

    ret_status = templog4_get_temp( &templog4, TEMPLOG4_TEMP_AMBIENT_REG, &temperature );

    log_printf( &logger, "** Ambient temperature: %f C **\r\n", temperature );

    check_limit_status( );

    log_printf( &logger, "\r\n", temperature );

    Delay_ms ( 300 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.TempLog4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Temp-Log 6 Click

0

Temp-Log 6 Click is a temperature sensing Click board™, which features the MAX6642, a specifically designed IC, capable of measuring its own die temperature, as well as a temperature at a remote PN junction. This option makes Temp-Log 6 Click well-suited for monitoring the temperature of a CPU, GPU or FPGA, where the PN junction is typically a substrate PNP transistor on the die of the measured IC.

[Learn More]

CAN FD 5 Click

0

CAN FD 5 Click is a compact add-on board that contains CAN transceiver that supports both CAN and CAN FD protocols.

[Learn More]

LTE Cat.1-EU Click

0

LTE Cat.1-EU Click is a Click board™ based on Thales Cinterion® ELS61 wireless module that delivers highly efficient Cat 1 LTE connectivity for M2M IoT solutions offering seamless fall back to 2G and 3G networks. The best in class solution enables M2M optimized speeds of 10Mbit/s download and 5Mbit/s uplink making it ideal for the vast number of M2M and industrial IoT applications that are not dependent on speed but that requires the longevity of LTE networks, while still providing 3G and 2G connectivity to ensure complete population and geographic coverage as LTE rolls out.

[Learn More]