TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140544 times)
  2. FAT32 Library (73037 times)
  3. Network Ethernet Library (58043 times)
  4. USB Device Library (48215 times)
  5. Network WiFi Library (43826 times)
  6. FT800 Library (43295 times)
  7. GSM click (30359 times)
  8. mikroSDK (28990 times)
  9. PID Library (27116 times)
  10. microSD click (26721 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Temp-Log 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 184 times

Not followed.

License: MIT license  

Temp-Log 6 Click is a temperature sensing Click board™, which features the MAX6642, a specifically designed IC, capable of measuring its own die temperature, as well as a temperature at a remote PN junction. This option makes Temp-Log 6 Click well-suited for monitoring the temperature of a CPU, GPU or FPGA, where the PN junction is typically a substrate PNP transistor on the die of the measured IC.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Temp-Log 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Temp-Log 6 Click" changes.

Do you want to report abuse regarding "Temp-Log 6 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Temp Log 6 Click

Temp-Log 6 Click is a temperature sensing Click board™, which features the MAX6642, a specifically designed IC, capable of measuring its own die temperature, as well as a temperature at a remote PN junction. This option makes Temp-Log 6 Click well-suited for monitoring the temperature of a CPU, GPU or FPGA, where the PN junction is typically a substrate PNP transistor on the die of the measured IC.

templog6_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the TempLog6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for TempLog6 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void templog6_cfg_setup ( templog6_cfg_t *cfg );

  • Initialization function.

    TEMPLOG6_RETVAL templog6_init ( templog6_t ctx, templog6_cfg_t cfg );

  • Click Default Configuration function.

    void templog6_default_cfg ( templog6_t *ctx );

Example key functions :

  • Writes one byte of data.

    void templog6_write_byte ( templog6_t *ctx, uint8_t reg, uint8_t data_buf );

  • Reads one byte of data.

    uint8_t templog6_read_byte ( templog6_t *ctx, uint8_t reg );

  • Gets the INT pin.

    uint8_t templog6_get_interrupt ( templog6_t *ctx );

Examples Description

The example starts off with the initialization and configuration of the Click and logger modules, tests the communication channel and reads and displays local and remote temperature values every second.

The demo application is composed of two sections :

Application Init

Initializes and configures the Click and logger modules and tests the communication for errors.


void application_init ( )
{
    log_cfg_t log_cfg;
    templog6_cfg_t cfg;

    uint8_t test;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    templog6_cfg_setup( &cfg );
    TEMPLOG6_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    templog6_init( &templog6, &cfg );

    // Test communication 

    test = templog6_read_byte( &templog6, TEMPLOG6_REG_MANUFACTURER_ID );

    if ( test == TEMPLOG6_MANUFACTURER_ID )
    {
        log_printf( &logger, "--- Comunication OK!!! ---\r\n" );
    }
    else
    {
        log_printf( &logger, "--- Comunication ERROR!!! ---\r\n" );
        for ( ; ; );
    }

    templog6_default_cfg( &templog6 );

    log_printf( &logger, "--- Start measurement ---\r\n" );
}

Application Task

Reads and displays local and remote temperature values every second.


void application_task ( void )
{
    float remote_temp;
    float local_temp;

    local_temp = templog6_read_byte( &templog6, TEMPLOG6_REG_LOCAL_TEMPERATURE );
    log_printf( &logger, "--- Local Temperature: %f C\r\n", local_temp );

    remote_temp = templog6_read_byte( &templog6, TEMPLOG6_REG_REMOTE_TEMPERATURE );
    log_printf( &logger, "--- Remote Temperature: %f C\r\n", remote_temp );

    log_printf( &logger, "-----------------------------\r\n" );
    Delay_ms ( 1000 );
}  

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.TempLog6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Ozone 3 Click

0

Ozone 3 Click is a compact add-on board suitable for ozone concentration detection and monitoring. This board features the 110-407, a high-performance ultra-thin electrochemical gas sensor from SPEC Sensors supported by the LMP91000, a high-precision integrated analog front-end IC (AFE) ideal for this sensing application. It provides the reference voltage required by the sensor and offers a choice between the analog output from the AFE IC buffered with the low noise Op-Amp and digital output from the 12-bit SAR A/D converter. This Click board™ represents an ideal choice for health, environmental, industrial, and residential monitoring.

[Learn More]

DAC 12 Click

0

DAC 12 Click is a compact add-on board that contains a highly accurate digital-to-analog converter. This board features the DAC60508, a general-purpose octal 12-bit analog voltage-output DAC from Texas Instruments. It includes a 2.5V, 5ppm/°C internal reference, eliminating the need for an external precision reference in most applications, and supports the SPI serial interface, which operates at clock rates up to 40MHz. A user interface-selectable gain configuration provides full-scale output voltages of 1.25V, 2.5V, or 5 V. This Click board™ represents an excellent choice for digital gain and offset adjustment applications, programmable voltage, and current sources, programmable reference, and many more.

[Learn More]

Load Cell 5 Click

0

Load Cell 5 Click is a compact add-on board that represents a weigh scale solution. This board features the AD7780, a pin-programmable, low power, 24-bit sigma-delta ΣΔ ADC from Analog Devices. It interfaces directly to the load cell, where the low-level signal from the load cell is amplified by the AD7780’s internal low noise programmable gain amplifier programmed to operate with a gain of 128 or 1. It also has a power-down mode allowing the user to switch off the power to the bridge sensor and power-down the AD7780 when not converting, increasing the product battery life. This Click board™ has many features that make it a perfect solution for safety-critical and weight measurement applications.

[Learn More]