TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141691 times)
  2. FAT32 Library (74759 times)
  3. Network Ethernet Library (59208 times)
  4. USB Device Library (49224 times)
  5. Network WiFi Library (44996 times)
  6. FT800 Library (44525 times)
  7. GSM click (31196 times)
  8. mikroSDK (30100 times)
  9. microSD click (27580 times)
  10. PID Library (27537 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Relay Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.19

mikroSDK Library: 2.0.0.0

Category: Relay

Downloaded: 717 times

Not followed.

License: MIT license  

Relay Click is a dual relay Click board, which can be operated by the host MCU. This Click board offers an elegant and easy solution for controlling a wide range of high power applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Relay Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Relay Click" changes.

Do you want to report abuse regarding "Relay Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Relay Click

Relay Click is a dual relay Click board, which can be operated by the host MCU. This Click board offers an elegant and easy solution for controlling a wide range of high power applications.

relay_click.png

Click Product page


Click library

  • Author : Katarina Perendic
  • Date : okt 2019.
  • Type : GPIO type

Software Support

We provide a library for the Relay Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Relay Click driver.

Standard key functions :

  • Config Object Initialization function.

    void relay_cfg_setup ( relay_cfg_t *cfg );

  • Initialization function.

    RELAY_RETVAL relay_init ( relay_t ctx, relay_cfg_t cfg );

  • Click Default Configuration function.

    void relay_default_cfg ( relay_t *ctx );

Example key functions :

  • Relay set state

    void relay_set_state ( relay_t *ctx, uint8_t relay, uint8_t state );

Examples Description

Demo application is used to shows basic controls Relay Click

The demo application is composed of two sections :

Application Init

Configuring clicks and log objects. Settings the Click in the default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;
    relay_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    relay_cfg_setup( &cfg );
    RELAY_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    relay_init( &relay, &cfg );

    relay_default_cfg ( &relay );
    Delay_ms ( 1000 );
    Delay_ms ( 500 );
}

Application Task

Alternately sets relays to ON-OFF state...

void application_task ( void )
{
    uint8_t cnt;

    //  Task implementation.

    for ( cnt = 1; cnt <= 2; cnt++)
    {
        log_info( &logger, "*** Relay %d state is ON \r\n", cnt);
        relay_set_state( &relay, cnt, RELAY_STATE_ON );
        Delay_ms ( 1000 );
        log_info( &logger, "*** Relay %d state is OFF \r\n", cnt);
        relay_set_state( &relay, cnt, RELAY_STATE_OFF );
        Delay_ms ( 200 );
    }

}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Relay

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

NFC click

0

NFC click is a mikroBUS add-on board with a versatile near field communications controller from NXP — the PN7120 IC. NFC devices are used in contactless payment systems, electronic ticketing, smartcards, but also in retail and advertising — inexpensive NFC tags can be embedded into packaging labels, flyers or posters.

[Learn More]

Flash 7 Click

0

Flash 7 Click is a compact add-on board that contains a high-performance memory solution. This board features the GD25LQ16C, a high-performance 16Mbit SPI NOR Flash Memory solution with advanced security features from GigaDevice Semiconductor.

[Learn More]

Calypso Click

0

Calypso Click is a compact add-on board for wireless connectivity in embedded applications. This board features the WIRL-WIFS Calypso WLAN module (2610011025000) from Würth Elektronik, which supports IEEE 802.11 b/g/n standards and includes a fully integrated TCP/IP stack. It also features edge castellated connections, a smart antenna configuration, and supports both IPv4 and IPv6 protocols, including SNTP, DHCP, mDNS, HTTP(S), and MQTT, offering secure connectivity with six simultaneous secure sockets, secure boot, and OTA updates.

[Learn More]