TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139568 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57256 times)
  4. USB Device Library (47631 times)
  5. Network WiFi Library (43222 times)
  6. FT800 Library (42566 times)
  7. GSM click (29932 times)
  8. mikroSDK (28292 times)
  9. PID Library (26934 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.18

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 281 times

Not followed.

License: MIT license  

THERMO 4 Click carries the LM75A digital temperature sensor and thermal watchdog. The sensor has the range from −55 °C to +125 °C.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo 4 Click" changes.

Do you want to report abuse regarding "Thermo 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Thermo 4 Click

THERMO 4 Click carries the LM75A digital temperature sensor and thermal watchdog. The sensor has the range from −55 °C to +125 °C.

thermo4_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Thermo4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Thermo4 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void thermo4_cfg_setup ( thermo4_cfg_t *cfg );

  • Initialization function.

    THERMO4_RETVAL thermo4_init ( thermo4_t ctx, thermo4_cfg_t cfg );

  • Click Default Configuration function.

    void thermo4_default_cfg ( thermo4_t *ctx );

Example key functions :

  • This function reads temperature values in Celsius format.

    float thermo4_read_temperature_c ( thermo4_t *ctx );

  • This function reads temperature values in Farenheit format.

    float thermo4_read_temperature_f ( thermo4_t *ctx );

  • This function is used to reset the sensor.

    void thermo4_reset ( thermo4_t *ctx );

Examples Description

This demo example returns temperature values in three different format.

The demo application is composed of two sections :

Application Init

Initializes the driver and makes an initial log.


void application_init ( void )
{
    log_cfg_t log_cfg;
    thermo4_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );

    //  Click initialization.

    thermo4_cfg_setup( &cfg );
    THERMO4_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    thermo4_init( &thermo4, &cfg );
    log_info( &logger, "---- Application Init ----" );
}

Application Task

Returns temperature values from the sensor.


void application_task ( void )
{
    temp_in_celsius = thermo4_read_temperature_c( thermo4 );
    temp_in_faren = thermo4_read_temperature_f( thermo4 );
    temp_in_kelvin = thermo4_read_temperature_k( thermo );

    log_printf(" Temperature celsius : %f %c\r\n", temp_in_celsius, deg_cel);
    log_printf(" Temperature farenheit : %f %c\r\n", temp_in_faren, deg_far);
    log_printf(" Temperature kelvin : %f K\r\n", temp_in_kelvin);

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermo4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Rotary R click

5

Rotary R click carries a 15-pulse incremental rotary encoder with detents, surrounded by a ring of 16 LEDs. It’s a perfect solution for adding a precision input knob to your design. The encoder outputs A and B signals (out of phase to each other); the knob also acts as a push-button which sends an interrupt to the target board MCU.

[Learn More]

ADC 8 click

5

ADC 8 Click is a high precision, low-power, 16-bit analog-to-digital converter (ADC), based around the ADS1115 IC. It is capable of sampling signals on four single-ended or two differential input channels.

[Learn More]

H-Bridge 7 click

5

H-Bridge 7 Click features flexible motor driver IC for a wide variety of applications, labeled as the DRV8876N. This Click board integrates an N-channel H-bridge, charge pump regulator, and protection circuitry. The charge pump improves efficiency by allowing for both high-side and low-side N-channels MOSFETs and 100% duty cycle support.

[Learn More]